Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Strict variant of NP
See sop-core
's
NP.
NP
Instances
HTrans (NP ∷ (k1 → Type) → [k1] → Type) (NP ∷ (k2 → Type) → [k2] → Type) Source # | |
Defined in Data.SOP.Strict.NP | |
HAp (NP ∷ (k → Type) → [k] → Type) Source # | |
HCollapse (NP ∷ (k → Type) → [k] → Type) Source # | |
Defined in Data.SOP.Strict.NP | |
HPure (NP ∷ (k → Type) → [k] → Type) Source # | |
HSequence (NP ∷ (k → Type) → [k] → Type) Source # | |
Defined in Data.SOP.Strict.NP hsequence' ∷ ∀ (xs ∷ l) f (g ∷ k0 → Type). (SListIN NP xs, Applicative f) ⇒ NP (f :.: g) xs → f (NP g xs) Source # hctraverse' ∷ ∀ c (xs ∷ l) g proxy f f'. (AllN NP c xs, Applicative g) ⇒ proxy c → (∀ (a ∷ k0). c a ⇒ f a → g (f' a)) → NP f xs → g (NP f' xs) Source # htraverse' ∷ ∀ (xs ∷ l) g f f'. (SListIN NP xs, Applicative g) ⇒ (∀ (a ∷ k0). f a → g (f' a)) → NP f xs → g (NP f' xs) Source # | |
HTraverse_ (NP ∷ (k → Type) → [k] → Type) Source # | |
Defined in Data.SOP.Strict.NP hctraverse_ ∷ ∀ c (xs ∷ l) g proxy f. (AllN NP c xs, Applicative g) ⇒ proxy c → (∀ (a ∷ k0). c a ⇒ f a → g ()) → NP f xs → g () Source # htraverse_ ∷ ∀ (xs ∷ l) g f. (SListIN NP xs, Applicative g) ⇒ (∀ (a ∷ k0). f a → g ()) → NP f xs → g () Source # | |
All (Compose Show f) xs ⇒ Show (NP f xs) Source # | Copied from sop-core Not derived, since derived instance ignores associativity info |
All (Compose Eq f) xs ⇒ Eq (NP f xs) Source # | |
(All (Compose Eq f) xs, All (Compose Ord f) xs) ⇒ Ord (NP f xs) Source # | |
All (Compose NoThunks f) xs ⇒ NoThunks (NP f xs) Source # | |
type AllZipN (NP ∷ (k → Type) → [k] → Type) (c ∷ a → b → Constraint) Source # | |
Defined in Data.SOP.Strict.NP | |
type Same (NP ∷ (k1 → Type) → [k1] → Type) Source # | |
type Prod (NP ∷ (k → Type) → [k] → Type) Source # | |
type SListIN (NP ∷ (k → Type) → [k] → Type) Source # | |
Defined in Data.SOP.Strict.NP | |
type CollapseTo (NP ∷ (k → Type) → [k] → Type) a Source # | |
Defined in Data.SOP.Strict.NP | |
type AllN (NP ∷ (k → Type) → [k] → Type) (c ∷ k → Constraint) Source # | |
Defined in Data.SOP.Strict.NP |
map_NP' ∷ ∀ f g xs. (∀ a. f a → g a) → NP f xs → NP g xs Source #
Version of map_NP
that does not require a singleton
singletonNP ∷ f x → NP f '[x] Source #