Safe Haskell | Safe-Inferred |
---|---|

Language | Haskell2010 |

Strict variant of NP

See `sop-core`

's
NP.

# NP

#### Instances

HTrans (NP ∷ (k1 → Type) → [k1] → Type) (NP ∷ (k2 → Type) → [k2] → Type) Source # | |

Defined in Data.SOP.Strict.NP | |

HAp (NP ∷ (k → Type) → [k] → Type) Source # | |

HCollapse (NP ∷ (k → Type) → [k] → Type) Source # | |

Defined in Data.SOP.Strict.NP | |

HPure (NP ∷ (k → Type) → [k] → Type) Source # | |

HSequence (NP ∷ (k → Type) → [k] → Type) Source # | |

Defined in Data.SOP.Strict.NP hsequence' ∷ ∀ (xs ∷ l) f (g ∷ k0 → Type). (SListIN NP xs, Applicative f) ⇒ NP (f :.: g) xs → f (NP g xs) Source # hctraverse' ∷ ∀ c (xs ∷ l) g proxy f f'. (AllN NP c xs, Applicative g) ⇒ proxy c → (∀ (a ∷ k0). c a ⇒ f a → g (f' a)) → NP f xs → g (NP f' xs) Source # htraverse' ∷ ∀ (xs ∷ l) g f f'. (SListIN NP xs, Applicative g) ⇒ (∀ (a ∷ k0). f a → g (f' a)) → NP f xs → g (NP f' xs) Source # | |

HTraverse_ (NP ∷ (k → Type) → [k] → Type) Source # | |

Defined in Data.SOP.Strict.NP hctraverse_ ∷ ∀ c (xs ∷ l) g proxy f. (AllN NP c xs, Applicative g) ⇒ proxy c → (∀ (a ∷ k0). c a ⇒ f a → g ()) → NP f xs → g () Source # htraverse_ ∷ ∀ (xs ∷ l) g f. (SListIN NP xs, Applicative g) ⇒ (∀ (a ∷ k0). f a → g ()) → NP f xs → g () Source # | |

All (Compose Show f) xs ⇒ Show (NP f xs) Source # | Copied from sop-core Not derived, since derived instance ignores associativity info |

All (Compose Eq f) xs ⇒ Eq (NP f xs) Source # | |

(All (Compose Eq f) xs, All (Compose Ord f) xs) ⇒ Ord (NP f xs) Source # | |

All (Compose NoThunks f) xs ⇒ NoThunks (NP f xs) Source # | |

type AllZipN (NP ∷ (k → Type) → [k] → Type) (c ∷ a → b → Constraint) Source # | |

Defined in Data.SOP.Strict.NP | |

type Same (NP ∷ (k1 → Type) → [k1] → Type) Source # | |

type Prod (NP ∷ (k → Type) → [k] → Type) Source # | |

type SListIN (NP ∷ (k → Type) → [k] → Type) Source # | |

Defined in Data.SOP.Strict.NP | |

type CollapseTo (NP ∷ (k → Type) → [k] → Type) a Source # | |

Defined in Data.SOP.Strict.NP | |

type AllN (NP ∷ (k → Type) → [k] → Type) (c ∷ k → Constraint) Source # | |

Defined in Data.SOP.Strict.NP |

map_NP' ∷ ∀ f g xs. (∀ a. f a → g a) → NP f xs → NP g xs Source #

Version of `map_NP`

that does not require a singleton

singletonNP ∷ f x → NP f '[x] Source #