sop-extras-0.4.0.0: Type-level and data utilities that build upon SOP.
Safe HaskellNone
LanguageHaskell2010

Data.SOP.InPairs

Description

Intended for qualified import

import           Data.SOP.InPairs (InPairs(..))
import qualified Data.SOP.InPairs as InPairs
Synopsis

InPairs

data InPairs (f ∷ k → k → Type) (xs ∷ [k]) where Source #

We have an f x y for each pair (x, y) of successive list elements

Constructors

PNil ∷ ∀ {k} (f ∷ k → k → Type) (x ∷ k). InPairs f '[x] 
PCons ∷ ∀ {k} (f ∷ k → k → Type) (x ∷ k) (y ∷ k) (zs ∷ [k]). f x y → InPairs f (y ': zs) → InPairs f (x ': (y ': zs)) 

Convenience constructors

mk1 ∷ ∀ {k} (f ∷ k → k → Type) (x ∷ k). InPairs f '[x] Source #

mk2 ∷ ∀ {k} f (x ∷ k) (y ∷ k). f x y → InPairs f '[x, y] Source #

mk3 ∷ ∀ {k} f (x ∷ k) (y ∷ k) (z ∷ k). f x y → f y z → InPairs f '[x, y, z] Source #

SOP-like operators

hcmap ∷ ∀ {k} proxy c f g (xs ∷ [k]). All c xs ⇒ proxy c → (∀ (x ∷ k) (y ∷ k). (c x, c y) ⇒ f x y → g x y) → InPairs f xs → InPairs g xs Source #

hcpure ∷ ∀ {k} proxy c (xs ∷ [k]) f. (All c xs, IsNonEmpty xs) ⇒ proxy c → (∀ (x ∷ k) (y ∷ k). (c x, c y) ⇒ f x y) → InPairs f xs Source #

hczipWith ∷ ∀ {k} proxy c f f' f'' (xs ∷ [k]). All c xs ⇒ proxy c → (∀ (x ∷ k) (y ∷ k). (c x, c y) ⇒ f x y → f' x y → f'' x y) → InPairs f xs → InPairs f' xs → InPairs f'' xs Source #

hmap ∷ ∀ {k} (xs ∷ [k]) f g. SListI xs ⇒ (∀ (x ∷ k) (y ∷ k). f x y → g x y) → InPairs f xs → InPairs g xs Source #

hpure ∷ ∀ {k} (xs ∷ [k]) f. (SListI xs, IsNonEmpty xs) ⇒ (∀ (x ∷ k) (y ∷ k). f x y) → InPairs f xs Source #

Requiring

newtype Requiring (h ∷ k → Type) (f ∷ k → k1 → Type) (x ∷ k) (y ∷ k1) Source #

Constructors

Require 

Fields

newtype RequiringBoth (h ∷ k → Type) (f ∷ k → k → Type) (x ∷ k) (y ∷ k) Source #

Constructors

RequireBoth 

Fields

ignoring ∷ ∀ {k1} {k2} f (x ∷ k1) (y ∷ k2) (h ∷ k1 → Type). f x y → Requiring h f x y Source #

ignoringBoth ∷ ∀ {k} f (x ∷ k) (y ∷ k) (h ∷ k → Type). f x y → RequiringBoth h f x y Source #

requiring ∷ ∀ {k} (xs ∷ [k]) (h ∷ k → Type) (f ∷ k → k → Type). SListI xs ⇒ NP h xs → InPairs (Requiring h f) xs → InPairs f xs Source #

requiringBoth ∷ ∀ {k} (h ∷ k → Type) (xs ∷ [k]) (f ∷ k → k → Type). NP h xs → InPairs (RequiringBoth h f) xs → InPairs f xs Source #

Composing

newtype Fn2 (f ∷ k → Type) (x ∷ k) (y ∷ k) Source #

Constructors

Fn2 

Fields

composeFromTo ∷ ∀ {k} (xs ∷ [k]) (x ∷ k) (y ∷ k) f. Index xs x → Index xs y → InPairs (Fn2 f) xs → f x → Maybe (f y) Source #