Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Synopsis
- newtype ByronSpecLedgerError = ByronSpecLedgerError {}
- initByronSpecLedgerState ∷ ByronSpecGenesis → LedgerState ByronSpecBlock
- data family LedgerState blk
- data family Ticked st
Documentation
newtype ByronSpecLedgerError Source #
Instances
Type family instances
data family LedgerState blk Source #
Ledger state associated with a block
This is the Consensus notion of a ledger state. Each block type is
associated with one of the Ledger types for the ledger state. Virtually
every concept in this codebase revolves around this type, or the referenced
blk
. Whenever we use the type variable l
, we intend to denote that the
expected instantiation is either a LedgerState
or some wrapper over it
(like the ExtLedgerState
).
The main operations we can do with a LedgerState
are ticking (defined in
IsLedger
), and applying a block (defined in
ApplyBlock
).
Instances
data family Ticked st Source #
" Ticked " piece of state, either LedgerState
or ChainDepState
Ticking refers to the passage of time (the ticking of the clock). When a
piece of state is marked as ticked, it means that time-related changes have
been applied to the state. There are exactly two methods in the interface
that do that: tickChainDepState
and
applyChainTickLedgerResult
.
Also note that a successful forecast
must equal
forecastFor
(ledgerViewForecastAt
cfg st)
slot
. Thus a
protocolLedgerView
cfg
(applyChainTick
cfg slot st)LedgerView
can only be projected
from a Ticked
state, but cannot itself be ticked.
Some examples of time related changes:
- Scheduled delegations might have been applied in Byron
- New leader schedule computed for Shelley
- Transition from Byron to Shelley activated in the hard fork combinator.
- Nonces switched out at the start of a new epoch.