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1 Introduction

The project is intended to solve the following problem: the Cardano node keeps its ledger state
within memory (RAM) and as Cardano scales up this will not be sustainable because the ledger
state will eventually grow too big.

The solution that this project is focused on is to move the bulk of the ledger state from
memory to disk. This will involved developing and then integrating new infrastructure in the
Cardano node (ledger and consensus layers) to allow large parts of the ledger state to be kept
on disk rather than in memory.

This document is intended to capture the business and technical requirements, to present a
small set of candidate solutions, and to evaluate and justify a preferred solution among those
candidates. That solution should be justified in complexity by the captured requirements.

Contents

1 Introduction 1

2 Summary 3
2.1 Example estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Crucial factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Requirements and targets 4
3.1 Transaction rate (TPS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3.2 Ledger state size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Resource requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3.1 Existing system requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3.2 CPU requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.3 Memory requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.4 Disk performance requirements . . . . . . . . . . . . . . . . . . . . . . . . 6
3.3.5 Disk space requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.4 Performance requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.5 Functional requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1



4 Related components 7
4.1 Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Ledger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Cardano DB-Sync and Cardano API clients . . . . . . . . . . . . . . . . . . . . . . 8

5 Analysis of on-disk data structures 9
5.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

5.1.1 UTxO operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.2 Stake address operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5.1.3 Stake distribution operations . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.4 Consensus operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.5 Cardano API clients operations . . . . . . . . . . . . . . . . . . . . . . . . . 10
5.1.6 Overall operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5.2 UTxO access pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5.3 UTxO data access locality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 SSD performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.5 Memory vs data set size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.6 The ‘RUM’ trade-off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.7 Assessing I/O performance feasibility . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Additional design considerations 15
6.1 Utilising parallel I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 Integration with io-sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
6.3 Changes to the ledger scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Existing on-disk data structures 16

8 Design choices 17
8.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

8.1.1 LSM trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
8.1.2 B+ trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

8.2 Off-the-shelf or bespoke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2.1 Development time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2.2 Integration time and complexity . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2.3 Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
8.2.4 Data structure and workload . . . . . . . . . . . . . . . . . . . . . . . . . . 20

8.3 Parallel or serial I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.4 Interface style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
8.5 Caching layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

9 Preferred option 22

10 Preferred development approach 22

11 Risks 23
11.1 API design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
11.2 Performance of bulk chain synchronisation . . . . . . . . . . . . . . . . . . . . . . 23

References 23

2



2 Summary

Memory (RAM) is very fast but memory space is relatively small and expensive. Disks – even
SSDs – are relatively slow, but disk space is relatively plentiful and cheap.

Thus the challenge when adapting a design from memory to disk is to maintain adequate
performance. For blockchains generally, and Cardano specifically, this is not a trivial prob-
lem. For example, for a long time Ethereum node performance was bottlenecked on disk I/O
performance. We must consider performance in the design analysis or we will face the same
problem.

Best case estimates indicate that the stretch goal of 200 TPS is very hard to achieve if one also
wants the time to synchronise the chain to be reasonable (e.g. the first time Daedalus is used).
Even threshold or mid targets of 20 and 50 TPS will be a challenge, while keeping sync times
reasonable.

The reason for this is clear: if we were to aim for syncing being 1000 times faster than real
time, then a year’s worth of chain data would take just under 9 hours to validate. End users
would have to wait 9 hours for each year that the chain had been operating at this rate. Arguably,
even this is unreasonably slow, and yet note that this already requires syncing to be 1000 times
faster. So if our target were 200 TPS, then the requirement for syncing would be 200,000 TPS. It
is intuitively clear that 20,000 or 200,000 TPS is a hard target indeed.

Overall this points to the next major scaling bottleneck being synchronisation performance.
Though it is out of scope for this project, it will likely be worth developing solutions that do not
require all nodes (e.g. Daedalus nodes) to download and validate the entire chain.

2.1 Example estimate

The simplified optimistic estimate is as follows:

• Assume the 200 TPS stretch goal.

• Assume the typical 2 inputs and 2 outputs per tx.

• Assume the UTxO is the only part of the ledger state of interest. This is a simplifying
assumption. In reality there are other parts of the ledger state that will make these estimates
worse.

• Assume the UTxO mostly does not fit in memory.

• Assume the UTxO read access pattern has poor temporal and physical locality, and thus
each lookup will typically require at least one “random” disk read.

• Assume that writes to the database are able to be efficiently dispatched in batches such
that they are insignificant in cost relative to reads. Note that this is a rosy assumption that
may be mostly true for LSM trees, but would not be true for many other data structures
(e.g. B+ trees)

• Assume a DB read amplification factor of 1.5. (This is a rosy assumption.)

• Thus 200 TPS translates to 200 × 2 × 1.5 = 600 disk I/O operations per second (IOPS).

• Assume a mid-range SSD rated at 10,000 IOPS for random reads at queue depth 1, and
100,000 IOPS for random reads at queue depth 32.

• Assume that we can fully utilise the parallel performance of the SSD, i.e. use queue depth
32.
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• The ratio of SSD performance IOPS (100,000) to live system IOPS (600) gives the sync
speed ratio, i.e. the factor that syncing the chain would be compared to real time. This is a
factor of 100, 000/600 = 167 in our example.

• Thus for a chain growing at 200 TPS for a year, the time to sync that chain would be 1/167
of a year, which is 52.5 hours, more than two days.

2.2 Crucial factors

As we can see in the estimate above, the chain sync times are not reasonable. The example
illustrates that the crucial factors are:

1. The target TPS

2. The read amplification factor

3. a database that can efficiently batch writes

4. The SSD random read performance

Thus if we reduce the target TPS by a factor of 10, we reduce the sync time bound correspondingly.
With 20 rather than 200 TPS we could expect at best 5 hours of syncing to catch up a year of the
chain.

A read amplification factor of only 1.5 is itself a challenge, and requires a good database
choice.

Modern SSDs IOPS for random read range from 100,000 to 1,000,000 for the extreme end of
the consumer market. Achieving these levels of performance requires utilising parallel I/O. If
only serial I/O is used, one is limited to the approximately 10,000 – 20,000 IOPS. Using parallel
I/O requires a more complex design and developing other additional software infrastructure.

So as we can see, even with 20 TPS, to achieve reasonable sync times will require a sophis-
ticated choice of database, and the development effort needed to take advantage of parallel
I/O. Or it requires relaxing the assumption that most of the ledger state does not fit in memory:
allowing users with lots of memory to sync quickly, while other users sync slowly.

2.3 Recommendation

The recommended development path is to assume that initially (e.g. 12 months) the TPS will
remain relatively low, and that the size of the ledger state will remain only somewhat bigger
than memory. In this case it may be possible to develop a solution that does not initially use
a very sophisticated database and does not use parallel I/O, but follows a design that can be
extended to do so.

3 Requirements and targets

3.1 Transaction rate (TPS)

The transaction rate is the average number of transactions per second (TPS). It is a measure of the
rate that data is added to a blockchain and is often used to compare different systems. It is a
crude measure because it does not take account of the transaction size, which can vary wildly.
Nevertheless, because it is the measure used to compare systems, our targets are also expressed
in TPS.

Our targets are
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Target TPS

Threshold 20
Middle 50
Stretch 200

For comparison, these are the current transaction rates of Cardano and comparable systems1.

System TPS (approx)

Bitcoin 4
Ethereum, peak 17
Cardano, mainnet typical 1
Cardano, mainnet max 7
Cardano, benchmarks max >50

It is out of scope for this storage project to demonstrate the node running at 50 or 200 TPS. It
is within scope to demonstrate that the storage system would not be a bottleneck that would
prevent the node running at 50 or 200 TPS.

3.2 Ledger state size

Cardano currently has approximately 2 million UTxO entries. For comparison, Bitcoin currently
has approximately 75 million UTxO entries2.

Cardano also has delegation. The current ratio between UTxO entries and registered stake
keys is 5:1. We will assume this 5:1 ratio persists.

Our targets for UTxO sizes are

Target (millions) UTxO entries Stake keys

Threshold 10 2
Middle 50 10
Stretch 100 20

We assume the number of registered stake pools will remain in the low thousands.

3.3 Resource requirements

The resource requirements of the Cardano node need to remain reasonable, to allow nodes
runing on end user systems with Daedalus, and to keep hosting costs for SPOs reasonable. The
purpose of this project is to limit the growth in the memory (RAM) requirement, while allowing
for a substantial increase in size of the ledger state generally by keeping most of it on disk. So
the memory requirement should remain steady or decrease while the disk requirements must
increase.

3.3.1 Existing system requirements

At the time of writing, the published requirements for the Cardano node3 and for Daedalus4 are:

1Bitcoin TPS charts https://blockchair.com/bitcoin/charts/transactions-per-second
Ethereum TPS charts https://blockchair.com/ethereum/charts/transactions-per-second

2Bitcoin UTxO size charts https://www.blockchain.com/charts/utxo-count
3https://github.com/IntersectMBO/cardano-node/releases/tag/1.26.2
4https://iohk.zendesk.com/hc/en-us/articles/360010496553-Daedalus-System-Requirements
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Resource Node Node + Daedalus

CPU x86 processor, 2+ cores at 1.6GHz
(2GHz for a stake pool or relay)

64-bit dual core processor

Memory 8 GB 8 GB
Disk space 10 GB, 20 GB for a stake pool 15 GB

These published requirements are not completely coherent, since the Daedalus case includes the
node, wallet backend and the Daedalus frontend, all of which take resources.

3.3.2 CPU requirements

No change in CPU requirement is expected.

3.3.3 Memory requirements

The memory requirement is expected to remain steady or decrease:

Memory target GB

Threshold 8
Middle 4
Stretch 2

3.3.4 Disk performance requirements

The crucial disk requirement will be disk random read performance (IOPS) not disk space. The
proposed requirements are

Random 4k reads IOPS

Queue depth 1 10,000
Queue depth 32 100,000

This implies a requirement for an SSD. Spinning disks cannot achieve these IOPS requirements.

3.3.5 Disk space requirements

There are also disk space requirements for storing the ledger state on an SSD. Given the target
of 10–100 million UTxO entries, and corresponding stake keys, and three stake distribution
snapshots, the expected disk requirement for the ledger state are

Target UTxO entries (millions) SSD disk space (GB)

Threshold 10 20
Middle 50 100
Stretch 100 200

In addition, disk space is needed to store the block chain itself. This does not require an SSD
and can use cheaper spinning magnetic disk. The disk space needed grows continuously, at a
rate that depends on the TPS.

TPS disk space per day (MB) per year (GB)

Mainnet typical 1 39 14
Mainnet current max 7 270 96
Threshold target 20 770 275
Middle target 50 1,929 687
Stretch target 200 7,714 2,750
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It is worth noting that the upper end is completely impractical for a public system where all
partipants download and retain the entire chain as it would require everyone running a node to
buy extra multi-terabyte hard drives per year.

3.4 Performance requirements

As described in the summary, we expect the time to synchronise the whole chain to be the
hardest performance requirement to achieve. This is because it involves doing the same thing as
the node does to validate the chain normally, but 100s of times faster, so that the node can sync
in a reasonable time frame.

We have no specific requirements for sync time, but reasonable values would be

Target faster than real time hours to sync 1 year

Threshold 100× 88 hours
Stretch 1000× 8.8 hours

3.5 Functional requirements

The storage system must support the needs of the consensus and ledger for storing the bulk
of the ledger state on disk. It must support all the operations that these components need to
interact with the selected parts of the ledger state that are kept on disk.

The ledger state consists of small complicated parts and large simple parts. Analysis indicates
that to meet the memory requirements, only the large simple parts of the ledger state need to be
kept on disk. It is acceptable to keep the other parts of the ledger state in memory.

The large parts of the ledger state that must be kept on disk are:

UTxO The collection of all unspent transaction outputs.

Stake addresses and delegation The collection of all registered stake addresses, their corre-
sponding reward account balances, and their choice of delegation to a stake pool. The
collection of stake addresses also needs to be indexed by ‘pointer’: the numerical index
of the location on the chain where the stake address was registered. This is needed to
support pointer addresses.

Stake distribution An aggregation of the UTxO by stake address, recording for each state
address the amount of stake controlled by that address.

Three snapshots of this stake distribution are required.

The storage system must support all the operations the consensus and ledger layers need for
interacting with these parts of the ledger state.

For an incremental delivery of a solution, it would be acceptable to start with the UTxO and
then proceede to the two stake collections. The UTxO is the largest of the collections, but the
two stake collections are also of a substantial size. To achieve the ledger size requirements from
Section 3.2 within the memory requirements from Section 3.3 will require all three large parts of
the ledger state to be kept on disk.

4 Related components

The related components are from the consensus and ledger layers.
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4.1 Consensus

The components that any new code would have to integrate with directly are from the consensus
layer. The consensus layer already has three subcomponents that manage on-disk data structures
as part of its storage subsystem, for storing:

• the old immutable part of the block chain

• the recent volatile part of the block chain

• snapshots of the ledger state

Storing parts of the ‘live’ ledger state would add a fourth such subcomponent.
The consensus layer performs all the state management on behalf of the ledger layer. Changes

will be required in this state management to accomodate keeping parts of the ledger state on
disk.

The design of the interface between the main consensus code and the extra storage subcom-
ponent will be crucial for the success of the project: both for the effort and disruption to the
consensus code and also the performance possiblities or limitations.

The (extensive) automated consensus tests rely on being able to mock out the underlying file
system used by the storage components, replacing it with a simulted file system. The simulted
file system supports deliberate scripted fault injection. The tests rely on this to be able to test
that the storage components and the consensus layer as a whole is fully robust in the face of
I/O failures and disk corruption. The existing storage components are written in terms of a file
system interface, which allows both the real file system for production, and a mock file system
instance for the tests.

To maintain the ability to test that integration of the whole consensus layer is robust to file
system failure and corruption, will require that new storage components are also written against
the file system interface, rather than using the file system directly.

4.2 Ledger

Although the ledger layer does not interact with disk storage directly, the design of the storage
system is heavily influenced by the needs and structure of the ledger layer. The consensus and
ledger components share an interface, enabling the consensus layer to perform all the state
management on behalf of the ledger. Currently this interface relies on the full ledger state being
kept in memory. This interface will have to be adjusted to enable the consensus layer to be able
to keep the large parts of the ledger state on disk. This interface change will obviously have an
impact on the ledger code.

The design of this interface will also be crucial to success of the project: both for the effort
and disruption to the ledger code and also the performance opportunities or limitations.

4.3 Cardano DB-Sync and Cardano API clients

The Cardano node provides an interface for other client applications to access the blockchain
data. Some client applications also need access to the ledger state as they process the blockchain.
In particular the DB-Sync component makes use of this. More generally the Cardano API is
in the process of being extended to make it easier to write client applications that make use of
the ledger state. Currently these client applications keep their own copy of the ledger state in
memory.

Eventually it will be necessary for these client applications, and DB-Sync in particular, to
also transition to keeping their copies of the ledger state on disk. The need for this transition is
less urgent for applications like DB-Sync than it is for the node itself, because these applications
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are typically hosted only on servers with more plentiful resources, whereas the node is intended
to be deployed in more locations where the resource limits are tighter.

It would save development effort overall if client applications can reuse the ledger state
storage components developed for the node.

5 Analysis of on-disk data structures

The most important design question is the choice of an appropriate on-disk data structure.
This data structure must satisfy the functional requirements from Section 3.5: the operations
needed by the ledger rules and consensus layer. We should start therefore with a review of the
operations required.

Beyond that, it is clear from initial estimates that the most pressing constraints are perfor-
mance constraints. We must therefore assess if the required rates of operations are feasible for
an on-disk data structure, and if so what the options and trade-offs are.

There is a fundamental trade-off in the performance of on-disk data structures between read
performance, write performance and the amount of main memory used. Athanassoulis et al.
[2016] describe this trade-off as the “RUM conjecture”: for read vs update vs memory. To see
where we fit in this trade-off we must analyse the expected mix of reads vs updates, and the
amount of memory available vs the expected size of the dataset.

Finally, to assess feasibility we need a quantitative – albeit approximate – assessment of the
I/O performance for different general design options vs the hardware capabilities. This requires
a brief review of hardware capabilities, i.e. SSD performance.

We review these issues in turn in the remainder of this section.

5.1 Operations

Here we describe the operations the on-disk data store must support. These requirements are
driven by the operation the ledger uses on those parts of the ledger state that we will move to
disk. As a reminder, the functional requirements from Section 3.5 are that we must keep the
following parts of the ledger state on disk

• The UTxO
• Stake addresses and delegation choices
• Stake distribution

5.1.1 UTxO operations

While processing transactions, the only operations on the UTxO are point LOOKUP, INSERT and
DELETE.

Depending on how the stake distribution is managed we may also require a bulk SCAN over
a stable snapshot of the UTxO.

5.1.2 Stake address operations

Transactions involving stake addresses can do the following: register, de-register, withdraw
rewards and set the delegation choice. These only need LOOKUP, INSERT and DELETE.

Maintaining an index of stake addresses by pointer also requires only LOOKUP, INSERT and
DELETE.

There is also a bulk INSERT needed when paying out stake pool rewards. This can be
implemented as multiple point INSERT operations, but some data structures may have more
efficient bulk operations.
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5.1.3 Stake distribution operations

The ledger layer needs to change the way it manages the stake distribution – for scalability
reasons unrelated to the disk storage. There are a couple of primary design options. Ideally the
on-disk storage should support either of these primary design options.

1. One option is to compute the stake distribution by doing a bulk SCAN over the UTxO
to aggregate the stake by the stake keys. This would require a bulk SCAN over a stable
snapshot of the UTxO to produce a new immutable table holding a stake distribution
snapshot. This snapshot would also need to support a bulk SCAN to aggregate the stake
pool distribution.

2. Another option is to maintain the current stake distribution incrementally as each trans-
action changes the UTxO. This would involve an UPDATE operation, which could be
implemented as a LOOKUP and INSERT, or some data structures may support it directly
more efficiently. This design would also involve taking a stable snapshot of the stake
distribution, and performing a bulk SCAN to aggregate the stake pool distribution.

5.1.4 Consensus operations

In addition to the operations required by the ledger layer, the consensus layer has to do the
overall state management and it has extra requirements.

The consensus layer needs to be able to roll back to any ledger state within the last K blocks.
For small K in particular this needs to be efficient since short forks are common. It is not
necessary to support every single intermediate rollback point in the last K, since it is possible to
roll forward from any point. So at minimum what is required is sparse rollback points, covering
at least K blocks.

It is also necessary to be able to snapshot the entire ledger state to disk from time to time.
This is needed to be able to shut down and restart, without having to replay the chain from
genesis. The consensus layer currently does this by writing out the whole in-memory ledger
state to disk. With parts of the ledger state on disk and parts in memory, it will still be necessary
to be able to construct consistent overall snapshots. The easiest way to do this would be for the
on-disk storage to support cheap snapshots – cheap in the sense that little time is needed to take
the snapshot. There will only be a limited number of such snapshots, e.g. 3, so it is acceptable
for these to incur extra storage costs.

It is worth noting that the consensus layer does not require the disk operations to be com-
pletely durable – the D in ACID. The consensus layer can recover from data loss – especially loss
of recent data – by replaying the chain or in the worst case by fetching the chain again from its
peers. This is an important point for performance because achieving durability generally entails
an fsync() operation which impedes efficient use of write buffers and large sequential writes.
The consensus layer already takes advantage of this for its other on-disk storage subcomponents.

5.1.5 Cardano API clients operations

Most Cardano API clients simply iterate the ledger state forward, and hence use the same
operations as needed by the ledger. Some also need to follow the live chain through rollbacks
and hence need the same operations as consensus does. Some API clients may also need bulk
SCANs over a snapshot of the UTxO, or other collections.

5.1.6 Overall operations

Overall we require the following operations

1. LOOKUP
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2. INSERT

3. DELETE

4. UPDATE: One of the design options for the stake distribution would benefit from a update
operation that performs an insert with monoidial merge with any existing value. This can
always be implemented with a LOOKUP followed by an INSERT operation, but some data
structures support a more efficient UPDATE directly.

5. BULK UPDATE: this is optional since it can always be implemented as multiple UPDATE

operations, but some data structures may support it directly.

6. SNAPSHOT: preserving a consistent snapshot of the collection.

7. RESTORE: restoring from a previous a snapshot.

8. SCAN: a bulk scan over a snapshot, or immutable table, in an arbitrary order.

9. ROLLBACK The consensus layer will rollback ledger state whenever it switches chain forks.
The data store must support this in some way, with at least sparse rollback points, covering
at least K blocks. This could be implemented in terms of SNAPSHOT and RESTORE or more
directly. Rollback by a small number of blocks will be frequent and needs to be efficient.

While not strictly essential, development will be considerably simplified if a single on-disk data
structure can support all operation for each of the three parts of the ledger state we need to store.

There are three data collections to keep on disk. We will focus the analysis on the UTxO
initially. The UTxO is the collection that is most frequently used, as it is consulted and updated
for every single transaction.

5.2 UTxO access pattern

The access pattern for the UTxO data structure is very write heavy. In the usual case, we expect
exactly three operations for each UTxO entry over its lifetime:

1. One INSERT operation when the UTxO entry is created.

2. One LOOKUP operation when validating the block in which the UTxO entry is spent.

3. One DELETE operation when the block that spends the UTxO entry is added to the chain.

This means that processing a typical transaction with 2 inputs and 2 outputs will entail:

• Two LOOKUP operations: one for each input.
• Two DELETE operations: one for each input.
• Two INSERT operations: one for each output.

This gives us a 1:2 read:write ratio; for each LOOKUP there is one INSERT and DELETE. This is
very write heavy, and is very different from typical database applications that are read heavy
(e.g. a 10:1 read:write ratio).

Note that some UTxOs will be read more often – if validation of a block fails – or if a block is
validated multiple times. We expect the vast majority of UTxOs to be read exactly once, and this
applies moreso while syncing, where we do not expect validation to fail. By definition, UTxOs
will be written at most twice: once to create and once to delete.
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5.3 UTxO data access locality

Many data structures exploit locality in their data. For example, a time series database will store
values together that are adjacent in time. In this way, queries which inspect values that are close
in time (most all queries to a time series database!) are able to read a single disk page, and obtain
many values of interest at once.

There are two dimensions for locality for the UTxO: the time of creation and the key/identifier.
The key/identifier in the UTxO is the pair of the transaction id – which is a 32 byte cryptographic
hash – and the index of the unspent output within that transaction.

We can expect no locality whatsoever in the identifier dimension. Indeed cryptographic
hashes are the worst case for locality because by design they are effectively perfectly random.
One might hope there is a small locality effect from accessing multiple outputs of the same
transaction at the same time. This would only provide a small benefit, but in practice multiple
outputs tend to be used independently because they tend to belong to different parties.

Less obviously, there is apparently relatively little temporal locality in UTxO blockchains.
The best available comparable data comes from bitcoin, for which there are charts5 of the age
distribution of the UTxO set. Ideally we would like the distribution of the lifespan of UTxO
entries, rather than the distribution of age of entries within the UTxO. So this is not the perfect
indicator, but under reasonable assumptions it is indicative. For locality to be really effective in
reducing I/O costs we would want to see a heavily skewed distribution with the bulk of the
activity corresponding to a small fraction (e.g. 10% or less) of the UTxO set. This is because that
would enable keeping the small active fraction in memory which would avoid I/O costs. What
the bitcoin age distribution indicates is that there is some temporal effect, but it is not strong.

The conclusion we should draw is that there is little data locality to take advantage of. There
may be limited temporal locality, but it is unlikely to be a decisive factor in choosing between
design options. There are a few corollaries of this conclusion:

• Caching the UTxO data (as opposed to indexes) is not likely to be very effective, unless
the memory cache is a large fraction of the total data size – which is contrary to our
requirements from Sections 3.2 and 3.3 for ledger state size and memory use.

• We cannot expect to do better than 1 disk read per LOOKUP operation. This is because due
to the poor data locality we cannot expect each disk read to fetch more than one element,
and because our requirements from Sections 3.2 and 3.3 are to manage ledger states that
are substantially bigger than the available memory.

• Thus, no matter the choice of on-disk data structure, we can expect the LOOKUP operation
performance to be bounded by the I/O performance of ‘random’ reads.

5.4 SSD performance

To assess feasibility we need a sense of typical SSD performance. We will include the perfor-
mance of spinning disks but only to illustrate that their performance is so poor as to be out of
the question.

To make things concrete we look at the example of Samsung SSDs. Samsung manufacture a
range medium to high end consumer and server SSDs. They helpfully publish rated performance
numbers including low and high queue depth. We select a vaguely representative sample of
their range, picking 500GB models where possible. For our spinning disk comparison we select
a couple models from Western Digital. Western Digital do not consistently publish performance
numbers for their disk drives, so some numbers below are taken from 3rd party reviews, or are
omitted entirely.

5For example https://hodlwave.com/
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Model Capacity Interface type Comment

WD Blue 1TB SATA Mainstream, low cost spinning disk
WD Black 1TB SATA ‘High performance’ spinning disk

870 QVO 1TB SATA Latest gen, high capacity, lower performance
860 PRO 512GB SATA Previous gen high end SATA
960 EVO 512GB NVMe PCIe 3 Previous gen high end NVMe
970 EVO Plus 500GB NVMe PCIe 3 Latest gen high end NVMe
980 PRO 500GB NVMe PCIe 4 Latest gen ultra-high performance NVMe

The random read performance is given at “queue depth 1” and at “queue depth 32”. Queue
depth 1 means issuing all I/O operations serially, whereas a high queue depth implies continu-
ously issuing many I/O operations in parallel, so that the hardware it given 32 operations to do
at any one time.

Model 4k reads at QD1 4k reads at QD32 QD32 speedup

WD Blue – 128 IOPS –
WB Black 200 IOPS 500 IOPS 2.5×
870 QVO 11,000 IOPS 98,000 IOPS 9×
860 PRO 11,000 IOPS 100,000 IOPS 9×
960 EVO 14,000 IOPS 330,000 IOPS 23×
970 EVO Plus 19,000 IOPS 480,000 IOPS 25×
980 PRO 22,000 IOPS 800,000 IOPS 35×

On the write side, some on-disk data structures are sensitive to random writes, while others rely
on sequential writes. The WD Blue model is omitted as the numbers are not readily available.

Model 4k writes at QD1 4k writes at QD32 sequential writes

WB Black 450 IOPS 460 IOPS 176 MB/s

870 QVO 35,000 IOPS 88,000 IOPS 530 MB/s
860 PRO 43,000 IOPS 90,000 IOPS 530 MB/s
960 EVO 50,000 IOPS 330,000 IOPS 1,800 MB/s
970 EVO Plus 60,000 IOPS 550,000 IOPS 3,200 MB/s
980 PRO 60,000 IOPS 1,000,000 IOPS 5,000 MB/s

There are a number of things to note:

• These are all relatively high end and expensive SSDs. Minimum system requirements can
only be at the lower end of this range.

• There is huge difference between serial and parallel performance: typically a factor of 10
to 20 times.

• Read performance at queue depth 1 has only slightly improved over time.

• Read performance at high queue depths continues to improve from one generation to the
next.

• Sequential write performance is even higher than random 4k writes at high queue depth,
typically by an extra 40–50%.

• Spinning hard drives have extremely low random access performance, though moderate
sequential performance.
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Real world numbers are less than the manufacturer rated numbers, once practical details like
file systems and OS I/O APIs are taken into account. The authors have benchmarked a 960 EVO
250GB model under Linux using the ext4 file system on an encrypted block device, using the
fio benchmarking tool. While rated at 330,000 IOPS for random reads at queue depth 32, the
fio benchmark shows it achieves around 220,000 IOPS for random reads at queue depth 32.

Using parallel I/O would give us the opportunity to get an extra factor of ×10–×20. It is
likely to be necessary to take advantage of this parallel I/O to achieve the system performance
requirements.

5.5 Memory vs data set size

The requirements from Section 3.2 are for a UTxO of 10–100 million entries, and 2–20 million
stake addresses. The memory requirement from Section 3.3 are for the node overall to take from
2–8GB. Thus we can assume that we can dedicate at least 1GB of main memory as part of an
on-disk data structure design.

The UTxO entries are expected on the order of 100 bytes for most entries, and around 128 for
EUTxO entries used by Plutus scripts. This means we can expect a 100 million UTxO to take
around 9–11GB on disk.

The UTxO is of course not the only on-disk data collection, but even if only half of the 1GB is
dedicated to the UTxO then this gives us a rather favourable ratio of available main memory to
the size of the data set on-disk. It is not enough to cache large parts of the data set, but is enough
to enable a number of more memory intensive options for on-disk data structures.

5.6 The ‘RUM’ trade-off

As described by Athanassoulis et al. [2016], there is a ‘RUM’ trade-off in the design of on-disk
data structures between read performance, update performance, and amount of main memory
required. Understanding where we fit in this trade-off will help to assess and select appropriate
design options.

In Section 5.2 we established that we have a very write heavy access pattern, with a read:write
ratio of 1:2 for the UTxO. In Section 5.5 we noted that we have a relatively generous amount of
memory available compared to our data set size. Given this, the RUM trade-off immediately
tells us that we should select an on-disk data structure that is optimised for writes at the expense
of reads and at the expense of the amount of main memory used.

There are write-optimised on-disk data structures that are able to batch all update operations
into a small number of write I/O operations. For example this would pack 30–40 UTxO INSERT

operations, or over 100 UTxO DELETE operations into a single 4k write. Furthermore, these
can be large sequential writes rather than 4k random writes, making optimal use of SSD write
performance.

By contrast, many read-optimised data structures entail that each update operation (i.e.
INSERT and DELETE) correspond to several small write I/O operations. Given our write-heavy
workload, the bottleneck would be I/O write operations.

On the other hand, as we established in Section 5.3, we cannot expect to do better than
a single read I/O operation for each LOOKUP operation. This would be the case even for
read-optimised data structures.

The RUM trade-off makes the choice clear: we should select a write-optimised design and
use our generous memory to dataset ratio to tune the design to get the read cost as close as
reasonably possible to the lower bound of 1 read I/O operation per LOOKUP operation. We can
then expect the performance bottleneck to be the hardware I/O random read performance.
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5.7 Assessing I/O performance feasibility

Given the targets for TPS in Section 3.1 and sync speed in Section 3.4, it is useful to see these
means as a requirement for the storage system. It is illustrative to look at the effective TPS
that would be needed to be able to sync 100 or 1000 times faster than real time, for different
TPS targets. The table below also shows the corresponding number of UTxO LOOKUP and
INSERT/DELETE operations per second, assuming the typical transaction of 2 inputs and 2
outputs.

Target TPS target sync factor effective TPS LOOKUP ops/s INSERT/DELETE ops/s

20 TPS 100× 2,000 TPS 4,000 8,000
20 TPS 1000× 20,000 TPS 40,000 80,000

200 TPS 1000× 200,000 TPS 400,000 800,000

If we assume a write-optimised data structure that can use sequential writes then we are
interested in the raw data rate of the UTxO operations. Assuming 128 bytes for INSERT and 36
bytes DELETE operations, the raw data rate for the last row of the table would be only 63MB/s.
In reality, write-optimised data structures have to write each data item on average several times,
but even a factor of 5 would still keep us well within the capabilities of the sequential write
speed of low end SATA SSDs. In short, with a write-optimised data store, write performance
will be well within the hardware performance capabilities of SSDs from Section 5.4.

On the read side, if we assume we can get relatively close to the lower bound of 1 read I/O
operation per LOOKUP operation, e.g. perhaps 1.2–1.5×, then we can see that the last row of the
table would correspond to 500,000–600,000 IOPS which is outside the capability of all but the
latest and most expensive desktop or server NVMe PCIe4 SSDs, and when using parallel I/O to
utilise a high queue depth.

Dropping down by a factor of 10 to the middle row gives us something that is within the
realms of possibility for mainstream SSDs, but only when using parallel I/O to utilise a high
queue depth.

Dropping down by a factor of 10 to the first row gives us something that is well within the
realms of possibility for mainstream SSDs, even when not using parallel I/O, and so using only
queue depth 1.

Finally we should be aware of some caveats. This analysis only covers the UTxO and not the
other components, so we must keep in mind that some I/O bandwidth is needed for the other
data stores. We must also remember that SSD read and write bandwidth compete with each
other, so we cannot use the full rated performance of both simultaneously.

6 Additional design considerations

6.1 Utilising parallel I/O

As discussed in Section 5.4, modern SSDs can achieve IOPS in the hundreds of thousands by
operating concurrently on many I/O requests at once. Without this concurrency they can achieve
only tens of thousands of IOPS. Low end SSDs will typically scale well up to 8-16 operations at
the same time, whereas high end SSDs will scale well up to 32, and up to 128 for some of the
latest generation high end models.

As we discussed in Section 5.7, we expect saturating the disk bandwidth will be necessary
to achieve reasonable sync times. For software to saturate the bandwidth of the disk however,
that software must be designed to issue many operations in parallel. There is a trade-off here
between performance and complexity, and hence development time. To saturate the bandwidth
of the disk by issuing operations in parallel will require more complexity in the solution. This
complexity is not confined to the storage subsystem. The opportunity for parallelism must be
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present in the consensus and ledger design and in the interface between the consensus and
storage subsystem.

It is very likely that a solution required to perform well with a growing blockchain will
need to exploit parallel I/O to achieve performance targets. Since the use of parallel I/O will
significantly affect the design of the interface between the consensus layer and its storage
subsystem, it makes sense to consider this in the design from the start, rather than to leave it to
a later phase of development. Indeed even if the parallelism is not fully exploited initially, it
probably still makes sense to design the interface to support parallel I/O.

6.2 Integration with io-sim

The Ledger and Consensus codebases have achieved impressive quality and reliability, in no
small part due to their use of the io-sim Haskell library to test against a broad array of failure
modes. This relies upon integrating at the Haskell source level.

The solution should similarly demonstrate it’s correctness with an io-sim test suite. This
is not a strict requirement, however it is difficult to see how one could be confident in the
correctness of the solution without it.

6.3 Changes to the ledger scheme

While the Byron ledger rules have a separate implementation that is verified against the exe-
cutable specification, Shelley (and the following era’s) use the executable specification directly.
This was a pragmatic choice at the time it was made, however it does introduce tensions. The
Ledger team are limited in their ability to modifying the implementation of those rules to
meet business requirements, because changing the executable specification risks introducing
unsoundness to the ledger rules.

The solution should minimise disruption to the implementation of the ledger rules. This
may require us to separate the implementation of the Shelley (and forward) ledger rules from
their executable specification.

7 Existing on-disk data structures

In the light of the RUM trade-off discussed in Section 5.6, it is interesting to review the the
existing on-disk data structures used in the node.

The existing consensus layer contains three on-disk data structures. All three of these on-disk
data structures are bespoke implementations. Two of them are special purpose key value stores.

The immutable block database This data structure stores the blocks from the old part of the
chain: the blocks that are no longer at risk from being rolled back. It is a special purpose key
value store. It maps the pair of a slot number and block hash to the serialised byte representation
of the block itself. The design of this store trades away read performance to get minimum
memory use: in general individual reads can take up to 3 I/O operations, but it does not require
any in-memory indexes. This design trade-off makes sense because the chain itself is large and
ever-growing, but we cannot dedicate an ever-growing amount of memory for indexes.

The access pattern for blocks tends to be sequential, and so the design supports efficient
sequential reads by placing blocks next to each other in the disk files. This substantially reduces
the I/O cost for sequential reads.

The volatile block database This data structure stores the blocks from the new part of the
chain, as well as blocks before they are added to the chain, and from forks that are no longer
part of the chain. It is a special purpose key value store. It maps the pair of a slot number and
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block hash to the serialised byte representation of the block itself. It follows a very different
design compared to the immutable block database. It is what is known in the literature as a
log-structured hash table (LSH table). It keeps a full in-memory index of all the keys, mapping
to the location on disk where the value can be found. This design of key value store trades-off
memory use to minimise the read and write I/O costs. It use memory to keeps a full index in
memory, but this allows reading with a singe I/O worst case, and all writes are sequential and
append-only. This design choice is appropriate because read and write performance for recent
blocks is important as these are the most frequently accessed ones, including in potentially
adversarial situations. The memory cost is acceptable because the size of the volatile block
database is relatively small.

The ledger snapshot database This on-disk store keeps relatively recent snapshots of the
ledger state. Its purpose is to allow the node to recover its in-memory version of the ledger state
without having to travers the whole blockchain from the start. It does not need to keep many
snapshots because the ledger state can be recovered by replaying the chain from any snapshot.

The RUM trade-off For the two key value stores, it is interesting to note – even though they
both do the same thing of mapping slot/hash pairs to blocks – that due to differing access
patterns and dataset sizes they sit in different parts of the ‘RUM’ trade-off space. The two
designs are optimised for their different locations in the ‘RUM’ trade-off space and are thus
quite different from each other.

Implementing bespoke on-disk data structures It is worth reflecting on the fact that the node
already contains two bespoke key value stores, optimised for different use cases. These were
both developed in reasonable time and to a very high quality.

The key value store for the large parts of the ledger state will be somewhat more complex as
it needs to support more operations (see Section 5.1).

8 Design choices

It is clear that we will need to integrate an on-disk key-value store capable of serving the ledger
state, and supporting the operations identified in Section 5.1.

There are many choices in the design space that trade off development effort, delivery risk
and scalability. We have factored these into a set of semi-independent choices:

• The choice of the class of on-disk data structure: e.g. B+ tree vs. LSM tree vs. other.

• The choice to reuse an existing on-disk data structure implementation or to implement
one bespoke.

• The choice of the style of interface between the consensus layer and the new ledger state
storage subsystem.

• The choice to use serial or parallel I/O.

• The option to add a special caching scheme to optionally take advantage of large amounts
of memory to increase performance.

In the remainder of this section we discuss each choice and how it affects our ability to meet our
requirements. In the following section we discussed the preferred option, which is a combination
of these choices.
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8.1 Data Structure

In Section 5.6 we came to the following conclusion:

The RUM trade-off makes the choice clear: we should select a write-optimised design
and use our generous memory to dataset ratio to tune the design to get the read
cost as close as reasonably possible to the lower bound of 1 read I/O operation per
LOOKUP operation.

This conclusion is based solely on scalability and meeting the middle to higher end of the
performance targets. There are also other choices with different trade-offs for development
effort.

8.1.1 LSM trees

We have identified LSM trees [Dayan et al., 2017] as the on-disk data structure most suitable for
our workload (see Section 5.6). LSM trees are the most widely used design for write-optimised
key value stores. They are used for example by the main bitcoin implementation for storing the
UTxO. LSM trees offer:

1. Append-only writes to disk.

This enables very good write performance. It also means that the slow fsync() operation
is not needed to ensure data consistency. It would only be needed for prompt durability
guarantees – which we do not require.

2. A cheap snapshotting mechanism.

Both the ledger rules and the consensus layer need to be able to take snapshots of parts or
all of the ledger state. It is helpful if this operation can be cheap.

3. A cheap rollback mechanism.

In normal operation the Cardano node needs to be able to roll back the ledger state to an
earlier point within the last K blocks, see Section 5.1.6.

4. Workload

There is a well specified recipe, described by Dayan et al. [2017], for tuning the data
structure to various workloads. Our workload is quite unusual (see Section 5.2) . We
would be able to tune the LSM tree to match that workload, and moreover, if the workload
changes in the future as Cardano evolves, we will have the opportunity to revisit these
decisions without reworking the entire data structure.

5. Efficient monoidial UPDATE operation.

The UPDATE operation can be implemented as a write operation without needing a LOOKUP.
This would be a major benefit if it needs to be used frequently because LOOKUP operations
are the performance bottleneck. We would use this at a very high frequency if we choose
to maintain the stake distribution incrementally.

There are no existing suitable Haskell implementations of LSM trees available on hackage.
There are existing non-Haskell implementations including LevelDB and RocksDB . Were we to
develop a bespoke LSM tree we would follow the blueprint laid out by Dayan et al. [2017].
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8.1.2 B+ trees

Rather than an LSM tree, one might use a B+ tree [Comer, 1979]. B+ trees are the main on-
disk data structures used by most traditional databases, including for example SQLite and
PostgreSQL. There is also an existing Haskell implementation of a B+ tree on hackage6.

We do not expect to be able to meet the minimum performance targets (see Section 3.4)
with a B+ tree based solution. The ability to reuse an existing implementation is a clear benefit
for development time. This could therefore be a useful interim solution, on route to the final
delivery.

8.2 Off-the-shelf or bespoke

There are many existing on-disk data stores, for example: SQLite7, PostgreSQL8, LevelDB9 and
RocksDB10 to name just a few. We could build our data store on one of these technologies, or
alternatively, we could develop a bespoke data store, either from scratch or on top of a lower
level technology.

The trade-offs are as follows.

8.2.1 Development time

We would expect most solutions utilising an existing, mature, technology to consume less
development time than developing a bespoke solution. Though there is clearly a saving on
developing the actual data store, significant work would remain in cleanly integrating and
testing the technology with our related components.

8.2.2 Integration time and complexity

Integrating an Off-the-Shelf data store will, for some choices of that data store, introduce
additional complexity to the deployment and operation of the Cardano Node. For this reason, we
can rule out out-of-process database, such as PostgreSQL, and limit our choices to embeddable
solutions such as SQLite, RocksDB, or LevelDB.

A bespoke solution could be designed and built to integrate seamlessly with the Cardano
node.

8.2.3 Quality

A solution built using a non-Haskell data store would preclude the ability to use the simulation-
based testing technique used by the existing consensus automated test suite (see Section 6.2).
The existing technique ensures two things:

1. that the integration of the on-disk data stores works in normal operation; and

2. that the combination of consensus components is robust in the presence of I/O failures
and silent disk corruption.

The first aspect could be covered by new integration tests, with an obvious development and
ongoing maintenance cost. The second point is exceedingly hard to replicate without the ability
to simulate a file system with fault injection.

6https://hackage.haskell.org/package/haskey
7https://www.sqlite.org/
8https://www.postgresql.org/
9https://github.com/google/leveldb

10https://rocksdb.org/
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The previous Cardano node implementation (cardano-sl) used an off-the-shelf data store
(RocksDB) and lacked this style of testing. Throughout its lifetime the previous node imple-
mentation suffered from unrecoverable disk corruption problems. These problems occurred in
production with users relatively frequently but were nevertheless extremely hard to reproduce
in a development setting – precisely because they depend on rare I/O faults occurring at par-
ticular times. This had a high cost on users and the technical support team, and generated a
poor reputation for Daedalus amongst users. These problems were fully resolved by the new
node implementation which was designed and developed along with the simulation and fault
injection testing framework.

Loosing this testing would mean we could no longer be confident that the node can re-
cover from disk problems. As the cardano-sl history makes clear, this would be a significant
retrograde step.

Certain existing data stores written entirely in Haskell – and any bespoke data store devel-
oped in Haskell – would have access to the io-sim tooling, and would integrate cleanly into
the existing consensus test suite. Existing Haskell implementations would need to support
replacing their disk data access layer and to be run in a caller-supplied monad. This is true of
the haskey library for example but is not true of any of the Haskell bindings to external libraries
such as RocksDB.

8.2.4 Data structure and workload

As described in Section 5.6, we have a clear idea of the trade-offs to which the data store should
be tuned. In Section 8.1 above, we described the main choices we have in data structure. For
any off-the-shelf solution we will be constrained to the on-disk data structure that implemen-
tation provides. We will be constrained to tune that implementation only with the adjustable
parameters offered by that implementation.

A bespoke data store will allow us the greatest flexibility in choosing and tuning the on-disk
data structure to handle our specific workload.

8.3 Parallel or serial I/O

As described in Section 6.1, we have the choice to use parallel I/O, at the cost of additional
complexity in the implementation. A scalable solution that meets the performance targets
(Section 3.4) will certainly require parallel I/O. It may be possible and reasonable to start with a
simpler, serial I/O implementation, and then add parallel I/O once we have demonstrated the
correctness of that simpler implementation.

An off-the-shelf implementation comes with a pre-existing fixed choice of serial or parallel
I/O. Thus, demanding parallel I/O restricts our choice of off-the-shelf implementations. Using
parallel I/O in an existing implementation will likely require using the database interface
in a particular way to expose the opportunities for parallelism, which would likely increase
integration complexity.

A bespoke implementation would require extra effort to take advantage of parallel I/O, but
the interface could be designed to minimise the integration complexity.

8.4 Interface style

There will be an interface between the consensus layer and the new storage subsystem. There
are a few main styles for this interface:

• A naı̈ve ‘CRUD’ interface
• A batch mode ‘CRUD’ interface
• A non-standard ‘pipelined’ interface
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One of the important considerations for development time is the changes that would be
needed to the consensus or ledger code bases to be able to adapt to using the on-disk storage.
These are both large and complex code bases, and hence minimising the changes to them can
be a very substantial saving. It could be worth using a non-standard interface if it enables less
invasive changes in the existing components.

A naı̈ve ‘CRUD’ interface to the data structure would be simple to provide on top of any
existing or bespoke underlying data store. A significant disadvantage to this style however
is that it precludes the use of parallel I/O because the interface is incapable of exposing any
parallelism of read operations to the underlying data store.

A batch mode ‘CRUD’ interface allows homogeneous batches of LOOKUP operations, batches
of INSERT operations etc. This enables the use of parallel I/O to some degree, if the underlying
data store is capable of it. It cannot necessarily fully utilise the full parallel I/O capacity of the
hardware because the homogeneous nature of the batches limits their size, and there are always
gaps between batches.

A disadvantage to both ‘CRUD’ style interfaces is that it requires the ledger rules to be
written to make the LOOKUP, INSERT and DELETE operations explicit. This would be a significant
change to the way the ledger rules are written. The ledger rules are currently expressed as pure
functions. In addition to the development cost of a change in style, there are good reasons for
the existing design as simple pure functions: it greatly simplifies testing and auditing against
the specification. The consensus design also takes advantage of the fact that the ledger rules are
pure functions.

Instead, we recommend a non-standard ‘pipelined’ interface which:

• allows the ledger state changes to remain as pure functions; and

• exposes arbitrary amounts of pipeline style parallelism in the operations.

The essential idea of this interface is that in advance of processing a transaction or block, we
identify all the keys that will need to be accessed – such as the transaction inputs which are the
keys of the UTxO – and perform the disk reads in advance to bring the results into memory.
Based on these read sets, the transactions are processed wholly in memory using pure functions.
The result of the transaction processing includes the differences to the on-disk tables, and these
differences are then flushed out to disk afterwards. This would still involve some changes to the
ledger rules to output the differences in the large mappings rather than the whole mappings.
This is a relatively mechanical change and keeps the general style as pure functions. We intend
to elaborate on this interface, and propose a design, in a following document.

Note that committing to this interface does not require us to implement parallel I/O oper-
ations immediately. The interface simply makes it possible by exposing the opportunity for
parallelism.

8.5 Caching layer

Although we expect caching to perform poorly over our data structure, due to the lack of data
access locality (see Section 5.3), perhaps a poor cache would be significantly better than nothing.

One option to mitigate long sync times may be to allow users to add a large in-memory cache
over the data structure while syncing. In this way, users could sync on a large cloud machine
(Say 64GB RAM), save their state to disk, then run their node on a smaller cloud machine using
that synced state.

This is somewhat speculative, and is included here due to the lack of other options for
improving sync times.
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9 Preferred option

Our preferred option is a hybrid, seeking to balance our ability to meet the performance targets
in the long term with developing an interim solution that lets us start to scale up the size of the
ledger state.

• We recommend the non-standard ‘pipelined’ style of interface (see Section 8.4) between
the consensus and storage subsystem. This should minimise the necessary changes in the
consensus and ledger layers and keep open the opportunity to take advantage of parallel
I/O. The choice of interface is hard to change later so it is best to pick the final best choice,
rather than taking an interim approach.

• We recommend an in-Haskell implementation of the on-disk data structure. As discussed
in Section 8.2.3, choice of an in-Haskell implementation preserves the investment in the
consensus testing infrastructure and assures that the node remains robust in the presence
of disk I/O failures.

• We recommend trying the existing haskey B+ tree implementation as an interim solution,
and a bespoke LSM tree implementation as a eventual solution. This balances the time to
develop a first working version term with the need to meet the performance targets in the
long term.

• We recommend that it will be necessary eventually to add support for parallel I/O to scale
to higher transaction rate targets while maintaining acceptable bulk sync times. This will
buy us approximately a factor of 10 in performance (throughput or sync times).

Building a version on top of haskey, and even delivering it to production, would solve the
upcoming problem of the ledger state not fitting in memory, and may have acceptable sync
times in the short term, assuming that the chain is still not too large and transaction rates are not
too high.

This preferred option will not meet the performance targets in the short term. With this
option they would only start to be met once the bespoke LSM tree is in place, and fully met once
parallel I/O is implemented.

10 Preferred development approach

Our preferred development approach seeks to minimize delivery risk, deliver some improve-
ment early, and give the option to pause some of the work before completion. We will design
the API early and implement several iterations of the data structure, each with more complexity
and better performance than the previous.

A key strategic question is early or late integration. Early integration would be clearly
preferable to minimise risks. On the other hand early integration may require too much attention
from the teams responsible for the components involved in the integration (ledger and consensus
teams) at a time when their attention is necessarily elsewhere.

Early integration In an early integration approach we would immediately prioritise a draft
API for agreement with stakeholders (ledger and consensus teams). Once agreed, we would
deliver a trivial implementation of a data store that was still entirely in memory, using the
existing in-memory representations, but which uses the newly agreed API to interact with the
data. The next phase would be the integration of that interface, driven primarily by the teams
responsible for the existing components, including the necessary changes to the ledger rules to
use ‘difference’ types for output.
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Late integration In a late integration approach we would still prioritise a draft API for agree-
ment with stakeholders. Once agreed however we would do prototype and exploratory integra-
tions without significant input from the teams responsible for the existing components. This
would reduce but not eliminate the risks of integration problems later.

Store development Irrespective of the early or late integration strategy, in parallel with the
actual or exploratory integration, we will begin implementing a B+ tree. Preferably this will be
done by reusing or modifying and reusing the existing haskey B+ tree library. The focus will be
to produce a working solution, not to achieve good performance. We will verify the correctness
of this implementation with QuickCheck property tests and io-sim where appropriate. The
intention will be to use these tests as a basis to test an LSM tree later.

Once the B+ tree is feature complete, and the related components have completed their
integration, we would have the option to tune the performance of the B+ tree so that it could be
deployed into production. Whether we would do this or not would depend on the urgency of
lowering the memory footprint of the Cardano node.

We will then replace the B+ tree in the previous solution with a bespoke LSM tree. Our
implementation will be designed with parallel I/O in mind from the outset. We will verify its
correctness with the test suite developed for the B+ tree implementation. We will iterate on this
LSM tree, improving its performance as required, including by using parallel I/O.

11 Risks

There are a numbers of risks in the project, and in the preferred option in particular.

11.1 API design

The design of the API between the consensus layer, ledger layer and the new storage subsystem
will have far reaching impact on the success of the project. We need to carefully balance the
need to integrate smoothly with the ledger and consensus layers and the requirement that the
API will be able to support parallel I/O. This points one towards fixing the API early, so that
integration in the related components can start, however this risks increasing the costs, or may
render impossible, incorporating the outcome of our experience implementing the data structure
into the design of the final API.

11.2 Performance of bulk chain synchronisation

As discussed in Section 5.7 there is reason to expect that any solution will have sync times in the
order of days per chain-year at even moderate transaction rates. This is the critical constraint
that guides the majority of our design. There is some opportunity to mitigate this (see e.g.
Section 8.5), but this will remain a looming threat if transaction rates increase substantially. We
recommend pursuing research to investigate ways that nodes can catch up with the blockchain
without having to validate the entire history of the chain.
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