
Storing the Cardano ledger state on disk:
API design concepts

AN IOHK TECHNICAL REPORT

Duncan Coutts
duncan@well-typed.com

duncan.coutts@iohk.io

Douglas Wilson
douglas@well-typed.com

Joris Dral
joris@well-typed.com

joris.dral@iohk.io

Version 0.6, August 2023

1 Purpose

This document is intended to explore and communicate – to a technical audience – design
concepts for how to store the bulk of the Cardano ledger state on disk, within the context of the
existing designs of the Cardano consensus and ledger layers. We will try to illustrate the ideas
with prose, algebra, diagrams, and models.

The reader is assumed to be familiar with the initial report on this topic, covering analysis
and design options [Wilson and Coutts, 2021].

2 Acknowledgements

Thanks to the consensus team for many useful discussions and feedback. Thanks particularly
to Edsko de Vries for critiques of early versions of these ideas. Thanks to Tim Sheard for the
inspiration to use the ideas and notation of a calculus of changes.

Contents

1 Purpose 1

2 Acknowledgements 1

3 Ledger state handling in the current design 2
3.1 In the ledger layer . 2
3.2 In the consensus layer . 2

4 Terminology and our perspective on databases 3

5 General approach 3
5.1 Inspiration from the ‘anti-caching’ database architecture 3
5.2 Reading data into memory in advance . 4
5.3 Differences of data structures . 5
5.4 Partitioned in-memory/on-disk representation . 5
5.5 Access to multiple (logical) ledger states . 7
5.6 Enabling I/O pipelining . 9

1

6 Notation and properties of differences 10

7 Abstract models of hybrid on-disk/in-memory databases 10
7.1 Simple sequential databases . 11
7.2 Change-based databases . 11
7.3 Hybrid on-disk / in-memory databases . 13

7.3.1 Performing transactions . 13
7.3.2 Flushing changes to disk . 14
7.3.3 Performing reads . 15

7.4 Multiple logical database states . 16
7.5 Change-based pipelined databases . 17
7.6 Change-based pipelined databases in the hybrid representation 20

References 21

3 Ledger state handling in the current design

3.1 In the ledger layer

The existing ledger layer relies heavily on using pure functions to manipulate and make use of
the ledger state. In particular, the ledger rules are written in a style where old and new states
are passed around explicitly. The ledger rules are complex and non-trivial to test, so the benefits
of using a pure style are substantial and not something that we would wish to sacrifice.

3.2 In the consensus layer

The consensus layer relies on the ledger layer for the functions to manipulate the ledger state,
but the design of the consensus layer relies on these functions being pure.

The consensus layer also relies on the use of in-memory, persistent1 data structures. It keeps
the ledger states for the last k blocks of the chain in memory. The consensus layer also evaluates
speculative ledger states along candidate chains, which may be adopted or discarded. Overall,
there is not just a single logical ledger state in use at once – there are many related ones. There are
enormous opportunities for sharing between these related ledger states and the use of persistent
data structures takes full advantage, such that the cost is little more than the cost of a single
ledger state. The incremental cost is proportional to the differences between the states.

Having quick and easy access to the ledger states of the last k blocks is not a design accident.
An important design principle for the Cardano node has been to balance the resource use in
all interactions between honest nodes and potentially dishonest nodes and thus resist DoS
attacks. This design principle led us to an Ouroboros design that involves efficient access to
recent ledger states. Kanjalkar et al. [2019] describe the consequences of the failure to adopt
this design principle. They identify a pair of flaws in the design of many other PoS blockchain
implementations which lead to resource imbalances that can be exploited to mount DoS attacks.
This was reported in the popular press as the so-called ‘fake stake attack’2. One of the design
flaws involves not having efficient access to recent ledger states and consequently postponing
block body validation to the last possible moment.

In our design to store much of the ledger state on disk, it is essential that we preserve the
ability to efficiently access and use the ledger states for the last k blocks. Our resistance to DoS
attacks depends on it.

1That is persistent in the sense of purely functional data structures, not persistent as in kept on disk
2For example https://www.zdnet.com/article/security-flaws-found-in-26-low-end-cryptocurrencies/

2

https://www.zdnet.com/article/security-flaws-found-in-26-low-end-cryptocurrencies/

Furthermore, chain selection within consensus relies on the ability to evaluate the validity
of candidate chains without yet committing to them. This also relies on being able to compute
derived ledger states

4 Terminology and our perspective on databases

We will make use of the terminology of databases as well as Cardano blockchain terminology.
This is potentially confusing since transactions are an important concept in both databases and
blockchain ledgers.

In this document we will mostly talk about transactions in the database sense. As it turns
out, the processing of transactions in the database sense (usually3) corresponds to processing of
whole blocks in the blockchain.

We will take a relatively abstract view of databases. For the most part, we will consider
databases simply as logical values without any particular implication of a choice of representa-
tion. Where it is important to imagine that a representation would be in-memory or on-disk, we
will try to be clear about it. In this same spirit, we will talk (and reason) about multiple logical
values of a database, even though real databases typically only allow access to the ‘current’
value of the database. In this abstract view of databases, a transaction is simply a way to get
from one logical value of the database to another.

This is exactly the same mathematical perspective we take with functional programming:
new values are defined based on old values. It is also exactly how we define our ledger rules as
functions on the ledger state: given an old state, it yields an updated state (with the old one still
available). A database perspective on the blockchain ledger would say that the ledger state itself
is the database and that the transactions on that database are the ledger state transformations
arising from extending the chain with additional blocks. This is the perspective we will take.

5 General approach

We wish to deviate as little as possible from the general design of the current ledger and
consensus layers, particularly with respect to using pure functions and persistent data structures.

The ledger state will be maintained using a partitioned approach with both in-memory and
on-disk storage. The large key-value mappings will be kept primarily on disk, and all other
state will be kept in memory.

We will manipulate the state using pure functions over immutable, in-memory data struc-
tures. This relies on two main ideas: reading the data into memory in advance, and working
with differences of data structures.

5.1 Inspiration from the ‘anti-caching’ database architecture

Our general approach takes inspiration from DeBrabant et al. [2013] who describe an OLTP4

database architecture that they call ‘anti-caching’.
The anti-caching architecture reverses the usual notion that a database’s value is represented

on disk while some data is cached in memory for efficiency. Instead, the perspective is that
the logical value of the database is represented in memory while much of the data is evicted
from memory to disk. This is the essence of the eponymous anti-cache: the disk is used as an
anti-cache to evict in-memory data, rather than using memory as a cache for disk data.

3For chain validation, the database transactions are the ledger state transformations arising from applying blocks
to a chain. For mempool validation, the database transactions are the ledger state transformations arising from new
blockchain transactions being added to the mempool.

4OLTP stands for Online Transaction Processing, which is a style of database workload. A blockchain ledger
database would be subjected to such a workload.

3

Diagram by DeBrabant et al. [2013, Figure 1] illustrating the difference in database
architecture: “In (a), the disk is the primary storage for the database and data is
brought into main memory as it is needed. With the anti-caching model in (b),
memory is the primary storage and cold data is evicted to disk.”

One of the ideas we borrow is that the logical value of the database is determined by the
in-memory data, with large parts of the data residing on-disk. This means that, as a matter of
principle, we do not need to constrain ourselves to keeping all data on disk. We merely need to
keep most of it on disk. Where there are efficiency or design complexity benefits, we can choose
to keep data in memory, provided that we do not exhaust our overall memory budget.

Another feature of the anti-caching architecture is that all data required to process a database
transaction must be in memory. If some or all of the data required by a transaction is not in
memory, then the database management system will first bring it back into memory from the
on-disk anti-cache and then retry the transaction. In principle, this approach can deal with
transactions that do dependent reads based on earlier reads (by multiple rounds of bringing data
into memory and retrying), but it is certainly simpler if all the required data can be identified
up-front.

This is the other main idea that we borrow: to do all the database transaction processing
in memory. This is a very attractive idea for our context because it enables the transaction
processing to be implemented using pure functions operating on in-memory data structures.
Unlike in the anti-caching design, we will rely on being able to identify all the data that will be
needed to process a transaction up-front so that there is no need to have a retry loop.

Our approach is not a full implementation of anti-caching. In particular, we do not use a
cache or an anti-cache to decide which data to keep in memory versus on disk. Instead, we use
a simple static policy that is appropriate for our use case.

5.2 Reading data into memory in advance

We will arrange to know in advance which parts of the ledger state may be used by the ledger
rules, and we will read the data from disk into memory in advance. This allows the actual
transformation to be performed on in-memory data structures and to be expressed as a pure
function, minimising the required changes to the implementation of the ledger rules. We simply
bring into memory the subset of the data that we will need. This subset is typically small.

4

in memory:

on disk:

required data
is read in

in memory transaction

As an example of this, consider validating a ledger transaction including its UTxO inputs:
we know we will need to look up the transaction inputs in the UTxO mapping. Which inputs
we will need is clearly known in advance as they are explicit in the transaction itself. For the
Cardano ledger rules in general, we believe that we can determine all the required mapping
entries and that there are no dynamic dependencies that cannot be discovered in advance. This
fact will enable us to keep the design simpler.

We do not use a cache (or anti-cache): we will always read the required data into memory.
As we have discussed previously [Wilson and Coutts, 2021] the data access patterns do not
substantially benefit from caching. This choice keeps the design simpler.

5.3 Differences of data structures

We will make use of differences of data structures. In particular, we will arrange for the ledger
rules to return differences and it is these differences that can be applied to the on-disk data
structures (e.g. as inserts, updates and deletes for on-disk tables).

in memory:

on disk:

in memory transaction

differences
written out

The simplest scheme, as in the diagram above, would be to write differences back to disk
immediately. As we will discuss, we will actually want to hold the differences in memory across
many transactions and flush them to disk later.

5.4 Partitioned in-memory/on-disk representation

To meet our targets for memory use, we must keep the bulk of the ledger state on disk, but as
mentioned already in Section 5.1, it is not necessary to keep the entire ledger state on disk. We
can achieve a substantially simpler design if we partition the state such that only large key-value
mappings are kept on disk, and all other data remains in memory. This approach is simpler in
several ways.

• Rather than solve the general problem of keeping complex compound data on disk, we
can reduce it to the well-understood problem of on-disk key-value stores.

5

• As mentioned in Section 5.2, we need to be able to predict which parts of the ledger state
will need to be fetched from disk. If it is only the large mappings that are on disk, then we
do not need to consider which other ‘miscellaneous’ parts of the ledger state are needed
since those parts are always in memory. This substantially simplifies the problem.

• As mentioned in Section 5.3, we need to be able to represent and manage differences of
data kept on disk. Differences of key-value mappings are straightforward, so we can avoid
the general problem of differences of complex data structures.

The observation that we have made about the Cardano ledger state is that while its structure
is relatively complex, with many nested parts, most of it is relatively small. Only a few parts of
the ledger state are really large, and those parts are all finite mappings. Thus, we believe this
approach will be sufficient to ensure the memory needed remains within the memory available.
The requirements for scale and resource use are given in the previous document [Wilson and
Coutts, 2021, Section 3].

Furthermore, all the large finite mappings in the ledger state have relatively simple key and
value types that can be represented as short byte strings. This allows them to be represented
as on-disk key-value stores, which gives us a wide choice of store implementations. Previous
analysis [Wilson and Coutts, 2021, Section 5] indicates that the performance requirements of
the different mappings are all compatible, so we believe we can use a single key-value store
implementation for all the on-disk mappings.

As for what counts as a large mapping, we draw the dividing line between ‘large’ and ‘small’
between those that are proportional to the number of stake addresses (or bigger) and those
that are proportional to the number of stake pools (or smaller). That is, mappings with sizes
proportional to the number of stake pools – or something smaller than the number of stake
pools – will be kept in memory. On the other hand mappings with sizes proportional to the
number of stake address – or bigger than the number of stake addresses – should be kept on
disk. The table below lists a selection of important mappings, what their size is proportional to,
and whether they will be stored in memory or (primarily) on disk.

Mapping: Size proportional to: Location:

The UTxO number of UTxO entries on disk
Delegation choices number of stake addresses on disk
Reward account balances number of stake addresses on disk
Stake address pointers number of stake addresses on disk
Stake distribution (by stake address) number of stake addresses on disk

Stake distribution (by pool) number of stake pools in memory
Stake pool parameters number of stake pools in memory
Protocol parameters constant in memory

In particular, note that the consensus layer needs rapid and random access to the stake dis-
tribution (by block producer, i.e, stake pool) to be able to validate block headers. Therefore,
performance concerns dictate that at least one mapping proportional to the number of stake
pools needs to be kept in memory.

For mappings based on the same key, it may or may not make sense to combine them into a
single on-disk store. Combining them may save space but depending on the access pattern and
on-disk store implementation we may obtain better performance by keeping them separate.

In a design where the state is partitioned between large on-disk tables and all other state in
memory, the pattern for performing a transaction is as depicted below. We read the required
data from the on-disk tables and combine it with the in-memory state to give a combined state
that we can use to perform the transaction. The transaction result is split again between the new

6

in-memory state, and differences on the large mappings which can be applied to the on-disk
tables.

k/v stores

in memory:

on disk:

in-mem only state

read sets

in memory transaction

new in-mem state

delta sets

Finally, note that for the parts of the ledger state that are kept in memory, there does still
need to be a mechanism to restore the state when the node restarts. The intention is to use
the same approach as the consensus layer uses now: writing snapshots to disk from time to
time and replaying from the most recent snapshot upon start up. Only minor changes to this
scheme are necessary to account for the on-disk mappings. To achieve a consistent snapshot
of the overall state, it will be necessary to take snapshots of the on-disk mappings and of the
in-memory data for the exact same state (i.e., corresponding to the ledger state of the same
chain). If the snapshots of the on-disk and in-memory parts were not synchronised, it would not
be possible to replay the subsequent changes upon start-up.

5.5 Access to multiple (logical) ledger states

As discussed in Section 3.2, the consensus design relies on having efficient access to multiple
ledger states corresponding to the k most recent blocks on the current chain. Furthermore, the
chain selection algorithm needs to compute ledger states along candidate chains without yet
committing to them. Evaluating the validity of candidate chains involves computing the ledger
state block by block, but if the chain turns out to be invalid, then we must discard it and the
corresponding ledger state. In particular, in this situation we must not change our current chain
or its corresponding ledger state.

Thus, the consensus design demands that we have the ability to manipulate multiple logical
ledger states. On the face of it, this requirement would appear to be hard to satisfy using
traditional on-disk data structures or database management systems which only provide a
single ‘current’ value.

We also discussed in Section 3.2 that the existing consensus design relies on persistent data
structures so that keeping many ledger states costs little more than keeping a single state. We
noted that the incremental cost of each extra copy is proportional to the differences between
the states. Of course, this only works because the states are closely related. More specifically, all
the ledger states the node needs to keep around are derived from a common state: the ledger
state of the ‘immutable tip’ of the current chain. This is the ledger state for the tip of the chain if
were to remove the most recent k blocks. Obviously, all the ledger states for the last k blocks are
related to this state by application of the ledger rules. The same holds for the ledger states of
any candidate chains that we need to validate since they must have an intersection within the
last k blocks.

7

ledger state at
immutable tip

. . . ledger states for last k
blocks of the current chain

ledger states from validat-
ing a candidate chain

In summary, we know that the differences between all the ledger states that we need to manipu-
late are relatively small (compared to the size of the ledger state itself), and they are all derived
from one ledger state at the ‘immutable tip’. Using persistent data structures is one way to take
advantage of this property. Another way is to represent the differences explicitly and use that to
construct (on-demand) the multiple logical states (or parts thereof).

The design we choose to take is as follows:

• we will keep a single copy of the ledger state (k/v mappings) on disk;

• that copy will correspond to the ledger state at the immutable tip, which is the common
root point of all other states;

• we will represent all other derived ledger states using differences from the common state;

• all these differences will be maintained in memory.

Or in diagram form:

the large on-disk tables for the
ledger state at the immutable
chain tip

. . . the in-memory only parts of the
ledger states after each block

. . .
the in-memory differences to
the on-disk tables arising from
each block

logical value:

representation:

in memory:

on disk:

+0 +1 . . . +k
the ledger states for the block
at the immutable chain tip, and
the k following blocks

This design resolves the tension: it uses only a single on-disk value at any one time, which
lets us use traditional database techniques, and yet it also lets us efficiently work with multiple
logical values of the database state at once.

We must, of course, assess the memory use of this approach. It involves keeping the changes
from the last k blocks in memory. Rough estimates suggest that, by the time we hit the stretch
target of 200 TPS, we should expect the representation of the differences to require in the order

8

of a few gigabytes of memory. As we noted previously [Wilson and Coutts, 2021, section 3.3.5],
it would be impractical to operate a public system at such TPS rates because of the high resource
use, but private instances may be practical and in such cases using a few GB of memory would
be acceptable.

5.6 Enabling I/O pipelining

As discussed in the initial report [Wilson and Coutts, 2021, sections 6.1 and 8.8], it is expected
that ultimately it will be necessary to make use of parallel I/O to hit the stretch performance
targets. This is because the expectation is that disk I/O (rather than network or CPU) could well
be the bottleneck for very high throughput validation of blockchains.

We may not make use of parallelism in an initial implementation, but if we are to keep open
the option to use parallelism later, then it is necessary for the interface between the application
and the disk storage layer to expose the opportunities for parallelism. Thus, we wish to find an
interface that allows for I/O parallelism.

It is worth keeping in mind how much parallel I/O we need to saturate a modern SSD. It is in
the order of 32 – 64 concurrent I/O operations being performed at all times. A useful abstraction
is to think of it as a queue of in-progress operations where new I/O operations are added at one
end and results arrive eventually at the other end, and the queue should be kept sufficiently full
to saturate the SSD’s throughput. Due to the high throughput and timing jitter, it is better to
‘over-fill’ the queue by some amount, e.g., 2×. That is, in order to ensure the SSD queue ‘depth’
does not drain to below 64, it may be necessary to aim to keep double that number of operations
in progress at the application level. The appropriate amount to use can be tuned based on I/O
profiling tools, but the overall point is clear: to fully exploit the throughput of an SSD, we need
to keep a substantial number of operations in progress at once – and on a continuous basis.

Since blockchains are mostly linear in nature (being a chain), the opportunities for I/O
parallelism come from batching and pipelining.

Batching: This is submitting a batch of I/O operations and waiting to collect them all. For
example, we could submit all the I/O reads for a single block in one go.

A block with 64 transactions with 2 UTxO inputs each would generate 128 read I/O
operations. So, we can see that large enough blocks could individually temporarily
saturate an SSD. Note that with just batching there is no overlapping of computation with
I/O since we wait for the I/O to complete and then use the results.

Pipelining: This is submitting a (typically) continuous stream of I/O operations in advance
of when their results are needed, and collecting each result (usually) in time before it is
needed.

For example, while we are doing the CPU work to process one block, we can have
submitted the I/O operations for one or more subsequent blocks so that their results are
available by the time we come to process them.

Note that this involves overlapping computation with I/O. In principle, the I/O queue
can be kept full: we can avoid any gaps between blocks when no I/O is being performed.

Given this, it is clear that pipelining is superior in terms of achieving enough I/O parallelism
to saturate an SSD, but is also clear that it is more complex to arrange. The opportunity for
batching arises naturally from processing blocks as a unit. In practice, if pipelining is used, it
would also be used with batching as a pipeline of batches (per block).

For this stage of the design, we simply need to ensure that the scheme for disk I/O makes
it possible to take advantage of I/O pipelining. Where it is practical to take advantage of
pipelining is then a design decision for the consensus layer. It may only be worth attempting
to use pipelining for bulk sync situations, and not attempting to use it opportunistically such

9

as when switching forks. Using only batching is likely to be sufficient for normal operation
when the node is already in sync. Indeed, using only batching may be sufficient for an initial
integration that is not yet aiming for the higher throughput targets.

6 Notation and properties of differences

To make the design ideas from the previous section more precise, we will use a more formal
presentation of differences. In this section, we briefly review the notation and properties of
differences that we will use in later sections. We roughly follow the presentation by Atkey
[2015].

We start with a set A of values of our data structure of interest. For some sets5, we are able
to find a corresponding set ∆A of differences or changes on values from the set A. We will use a
naming convention ∆a ∈ ∆A, using a ∆-accent, to remind ourselves which variables represent
differences. So note that ∆a is not an operator on a variable a, as it is simply a variable naming
convention.

We can apply a difference to a value to produce a new value: given a ∈ A and ∆a ∈ ∆A, we
can use the apply operator ◁ to give us (a ◁ ∆a) ∈ A.

The differences ∆A form a monoid with an associative operator ⋄ and a zero element 0 ∈ ∆A.
This means we can compose changes, and we can always have no change.

In addition to the monoid laws, we have a couple of straightforward laws involving applying
changes. The zero change is indeed no change at all

∀a ∈ A. a ◁ 0 = a (1)

and applying multiple changes is the same as applying the composition of the changes.

∀a ∈ A. ∀
∆

b, ∆c ∈ ∆A. (a ◁
∆

b) ◁ ∆c = a ◁ (
∆

b ⋄ ∆c) (2)

We will use the notation ♢∑ for an n-way monoidal sum, meaning simply the repeated use of
the associative ⋄ operator. An empty 0-way sum is of course defined as the zero change.

♢
n

∑
i=0

∆ai =
∆a0 ⋄

∆a1 ⋄
∆a2 ⋄ . . . ∆an

We will also talk about functions that transform values, and corresponding functions that

compute differences. Given a function f : A → A, a difference function
∆

f : A → ∆A corresponds
to the original function f if it satisfies the property that applying the change gives the same
result as the original function.

a ◁
∆

f (a) = f (a) (3)

We will sometimes be able to derive difference functions from the original transformation
functions.

7 Abstract models of hybrid on-disk/in-memory databases

In this section, we will look at an abstract formal treatment of databases based on differences.
The abstract models we will look at are motivated by the ideas discussed in Section 5. We
will discuss how different models correspond to different implementation strategies, including
in-memory and on-disk data storage. Where appropriate and possible, we will sketch proofs
to reassure ourselves that we will get correct results. There are a few reasons to consider these
models.

5Our data structures of interest will typically be finite mappings, and we will see that differences for finite
mappings are straightforward.

10

Lucid descriptions There is the usual reason for abstraction, that omitting unnecessary details
can make the ideas easier and shorter to describe.

Imagining implementation strategies Another reason is that, although these are abstract mod-
els, they can be seen to correspond to certain implementation approaches. For example, we
will refer to certain terms as representing on-disk or in-memory data structures. Obviously,
mathematically there is no such distinction, but it is very useful to see the correspondence
to an implementation strategy. It lets us think about implementation constraints and
whether a design idea seems plausible.

Seeing equivalences By describing the models in mathematical terms, we may be able to show
mathematical equivalences between models. This is especially useful when we have a
model that corresponds to a preferred implementation approach and we can show that it
is mathematically equivalent to some reference model.

As mentioned in Section 4, our use of the term ‘database’ in this section is quite abstract: we
mean only some collection of data. This section makes use of the idea and notation of the
calculus of differences from the previous section.

7.1 Simple sequential databases

This is a very simple model. In this model, there is an initial database state db0 ∈ DB and a series
of state transformation functions tx0, tx1, . . . ∈ DB → DB, which we can also think of as database
transactions. Applying each transformation function to the previous state by dbn+1 = txn(dbn)
gives rise to a series of database states db0, db1,

db0 db1 db2 db3 . . .

tx0 tx1 tx2

db1 = tx0(db0)

db2 = tx1(db1)

...

And in general

dbi+1 = txi(dbi) (4)

This model serves as an important semantic reference point for the more complicated models
below. We will want to show that some of our more complicated models are semantically
equivalent to this simple one.

If we think of this model in terms of what kind of implementation strategy it most clearly
represents, then it would be a simple in-memory design. That is a design where the whole
database is a simple program value that is transformed with pure functions.

7.2 Change-based databases

In this model, we want to introduce two concepts:

1. the use of transaction difference functions and applying differences; and

11

2. identifying the subset of values that each transaction needs.

It is otherwise just a simple sequence of database values. The use of these two concepts
makes this a simple but reasonable model of an on-disk database with in-memory transaction
processing (as introduced in Sections 5.2 and 5.3). Using a subset of values corresponds to
reading the data in from disk, while obtaining and applying differences corresponds to writing
changes back to disk.

Whereas in the previous model we had a series of transaction functions tx0, tx1, . . ., in this
model we will have difference functions

∆
tx0,

∆
tx1, . . . : DB → ∆DB. These are required to be

proper difference functions, satisfying the property

db ◁
∆
tx(db) = tx(db) (5)

For each transaction, we will also identify the subset of the database state that the transaction
needs. This will typically take the form of a set of keys ks ⊆ dom DB (or collection of sets of
keys) which will be used to perform a domain restriction db|ks ⊆ DB. So, there will key sets

ks0, ks1, . . . corresponding to the transactions
∆
tx0,

∆
tx1, We will require that the transaction

really does only make use of the subset by requiring the property that the transaction function
gives the same result on the subset as on the whole state

∆
tx(db|ks) =

∆
tx(db) (6)

The domain restriction on the database value corresponds to reading a set of keys ks from the
database, and we call the result a read set. We will define each read set as rsi = dbi|ksi

and the

changes from each transaction as
∆

dbi+1 =
∆
txi(rsi). The series of database states db0, db1, . . . can

now be constructed by applying the changes from each transaction to the previous database
state.

db0

db1
=

db0 ◁
∆

db1

db2
=

db1 ◁
∆

db2

. . .

rs0 = db0|ks0
∆

db1 =
∆
tx0(rs0)

rs1 = db1|ks1
∆

db2 =
∆
tx1(rs1)

ks0 ks1

db1 = db0 ◁
∆

db1 where
∆

db1 =
∆
tx0(rs0) and rs0 = db0|ks0

db2 = db1 ◁
∆

db2 where
∆

db2 =
∆
tx1(rs1) and rs1 = db1|ks1

...
And in general

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi(rsi) and rsi = dbi|ksi

It is straightforward to see how this is equivalent to the simple model.

dbi+1 = dbi ◁
∆
txi(dbi|ksi

)

≡ {by the restriction property Equation (6) that
∆
txi(db|ksi

) =
∆
txi(db)}

dbi+1 = dbi ◁
∆
txi(dbi)

≡ {by the difference function property Equation (5) that db ◁
∆
tx(db) = tx(db)}

dbi+1 = txi(dbi)

12

Which is the same as Equation (4): the recurrence for the simple model.

7.3 Hybrid on-disk / in-memory databases

This model covers the bare essence of the idea from Section 5.5: that is, representing the ledger
state as the combination of data on disk and differences in memory. This model is just about
representing a single ledger state. We will look at representing multiple states in Section 7.4.

In this model, we represent the data as a combination of two parts. One will stand for data
on disk and the other will stand for data in memory. The on-disk part will be ordinary database

values dbdisk
i ∈ DB, while the in-memory part will be database differences

∆

dbmem
i ∈ ∆DB. We

define the overall logical value of the database to be the on-disk part with the in-memory
changes applied ‘on top’.

dbi = dbdisk
i ◁

∆

dbmem
i (7)

In a visual notation, we will depict that idea as follows. Above the line is the logical value of the
database, while below the line is the corresponding representation.

dbdisk
i

∆

dbmem
i

logical value:

representation:

dbi = dbdisk
i ◁

∆

dbmem

There are a couple of lemmas that will prove useful later when reasoning about this repre-
sentation. One is that if we have a domain restriction ‘outside’ of the application of changes,
then it does not make any difference if we also use domain restriction ‘inside’ or not.(

dba ◁
∆

dbb

)∣∣∣
ks
=

(
dba|ks ◁

∆

dbb

)∣∣∣
ks

(8)

This lemma either needs to be proved universally or we will need to make it a required property
of the apply changes operator for the choice of ∆DB.

The other useful lemma is a simple corollary of Equation (6) and Equation (8)

∆
tx

((
dba ◁

∆

dbb

)∣∣∣
ks

)
=

∆
tx

(
dba|ks ◁

∆

dbb

)
(9)

This lets us ‘shift’ a domain restriction from outside to inside the application of changes, within
the context of a ‘proper’ transaction function

∆
tx that satisfies Equation (6).

7.3.1 Performing transactions

We now need to see how performing transactions works in this representation. We will, of
course, use the change-based style of transactions, as in the previous model (in Section 7.2).

13

Given the changes made by a transaction
∆
txi(dbi|ksi

), we would normally obtain the new state of
the database by applying the changes to the previous state

dbi+1 = dbi ◁
∆
txi(dbi|ksi

)

With the hybrid representation (for dbi), that is

dbi+1 =
(

dbdisk
i ◁

∆

dbmem
i

)
◁

∆
txi(dbi|ksi

)

As we know from Equation (2), applying two sets of changes is equivalent to applying the
composition of the changes, and we choose to make use of this.

dbi+1 = dbdisk
i ◁

(∆

dbmem
i ⋄

∆
txi(dbi|ksi

)
)

This now fits the same hybrid representation. We can define the new in-memory value to be

∆

dbmem
i+1 =

∆

dbmem
i ⋄

∆
txi(dbi|ksi

)

to get

dbi+1 = dbdisk
i ◁

∆

dbmem
i+1

Or pictorially

dbdisk
i

∆

dbmem
i

∆

dbmem
i+1 =

∆

dbmem
i ⋄

∆
txi(dbi|ksi

)

logical value:

representation:

dbi dbi+1 = dbi ◁
∆
txi(dbi|ksi

)

Notice that we have applied the transaction exclusively to the in-memory part, without changing
the on-disk part. Obviously, we cannot do this indefinitely or the size of the in-memory part
will grow without bound.

7.3.2 Flushing changes to disk

In this approach, we must flush changes to disk from time to time. Let us see how that might
work. Of course, flushing is not supposed to change the logical value of the database. It is just
supposed to shuffle data from the in-memory part to the on-disk part. Suppose we start from a
state

db = dbdisk ◁
∆

dbmem

Suppose further that the in-memory part consists of the composition of (at least) two sets of
changes.

∆

dbmem =
∆

dbmem
a ⋄

∆

dbmem
b

14

This will be a typical situation since, as we saw above, applying each transaction gives an extra
composition of changes. The idea is that the first part will be flushed to disk and the second part
will remain in memory. We have a lot of choice here. We can split this in any way we like, in
particular at any boundary between changes from transactions. For example, we could choose

to flush everything to disk by picking
∆

dbmem
b = 0, but we can also choose to flush just a prefix of

changes.
Doing the flush is another straightforward application of Equation (2), but in the opposite

direction.

db = dbdisk ◁
(∆

dbmem
a ⋄

∆

dbmem
b

)
≡

db =
(

dbdisk ◁
∆

dbmem
a

)
◁

∆

dbmem
b

We can interpret the application of changes dbdisk ◁
∆

dbmem
a as performing the writes to the on-disk

database. Here is the same in pictorial style:

dbdisk dbdisk ◁
∆

dbmem
a

∆

dbmem
a ⋄

∆

dbmem
b

∆

dbmem
b

logical value:

representation:

db

7.3.3 Performing reads

A detail we glossed over above is how we perform reads in this representation. We said above
(in Section 7.3.1) that

dbi+1 = dbi ◁
∆
txi

(
dbi|ksi

)
but we glossed over how we obtain the read set dbi|ksi

. In the context of the hybrid in-memory
/ on-disk database representation, we are interested in how this corresponds to operations
involving the on-disk and in-memory parts. So let us look at the read set in the context of using
it with the transaction function and rewrite it into a more useful form

∆
txi

(
dbi|ksi

)
≡ {by Equation (7), expanding the definition dbi = dbdisk

i ◁
∆

dbmem
i }

∆
txi

((
dbdisk

i ◁
∆

dbmem
i

)∣∣∣
ksi

)
≡ {by Equation (9), the corollary that

∆
txi

((
db ◁

∆

db
)∣∣∣

ks

)
=

∆
txi

(
db|ks ◁

∆

db
)
}

∆
txi

(
dbdisk

i

∣∣∣
ksi

◁
∆

dbmem
i

)

15

This is a very useful result. The value dbdisk
i

∣∣∣
ksi

corresponds to performing a set of reads from

the on-disk part of the database. Notice that we needed the context of using the read set in the
transaction to apply Equation (9). The intuition is that pushing the domain restriction inside of
applying the in-memory changes could increase the size of the read set, but the transaction is
guaranteed not to look at anything outside the ksi subset.

dbdisk
i

∆

dbmem
i

dbdisk
i

∣∣∣
ksi

dbdisk
i

∣∣∣
ksi

◁
∆

dbmem
i

Overall, we see that we can perform reads on the hybrid representation simply by performing
the reads on the on-disk part and then applying the in-memory differences to the result. This is
something that can be implemented in a relatively simple and efficient way.

7.4 Multiple logical database states

This model covers the full idea from Section 5.5, in which we want to maintain and have efficient
access to many logical values of a database at once. In particular, we want to model having a
single on-disk state at once and a whole series of in-memory differences, giving us a series of
logical database values.

dbdisk
i

∆

dbmem
i+1

. . . ∆

dbmem
i+k

logical value:

representation:

dbi+0 dbi+1 . . . dbi+k  = dbdisk
i ◁ ♢

k

∑
j=1

∆

dbmem
i+j

As depicted above, the representation consists of a single disk state and a series of in-memory
differences. Each difference is the individual difference from performing a transaction. That is,
we keep each difference and do not compose them together prematurely. Each logical database

16

value is the value of the on-disk state with the monoidal composition of the appropriate changes
applied on top. That is, for the kth database value beyond the on-disk state we have

dbi+k = dbdisk
i ◁ ♢

k

∑
j=0

∆

dbmem
i+j

which of course for the zero case is simply

dbi+0 = dbdisk
i

Although we are interested in the compositions of differences, we must keep the individual
differences. The reason is that, when we do flush changes to disk, we need to discard the oldest
in-memory differences, which entails computing new monoidal compositions of the remaining
differences.

One interesting implementation idea to manage both a sequence of k differences and also the
efficient monoidal composition of them is to use a finger tree data structure [Hinze and Paterson,
2006]. A finger tree is parametrised over a monoidal measure of subsequences. The choice
of measure for a subsequence in this case would be the range of slot numbers and also the
composition of the differences. The slot number range is included to support splitting at slot
numbers. We would rely on splitting to obtain the subsequence of differences for evaluating a
chain fork that starts from a recent point on the chain. Including the other part of the measure –
the differences – would mean that the measure of any sequence or sub-sequence would be the
overall monoidal composition of all the differences in that (sub-)sequence. The finger tree data
structure takes care of efficiently caching the intermediate, monoidal measure values. Finger
trees are already used extensively within the consensus implementation.

There are a few operations we need to be able to perform in this setting:

1. Perform reads of sets of keys and ‘forward’ the resulting read set using the accumulated
sequence of differences.

2. Replace any suffix of the sequence of logical database values. This corresponds to switching
to a fork. The replacement subsequence can start anywhere in the sequence, and the
replacement subsequence can have any length. The very common special case is to append
to the end of the sequence of logical database values. This corresponds to adding a block
to the end of the chain, or adding more transactions to a mempool.

3. Flush changes to disk. We need to be able to take some of the oldest changes and apply
them to the on-disk store.

These operations are straightforward generalisations of the operations we have already seen in
Section 7.3. The first two are about constructing new logical database values by making new
in-memory differences. In this representation, it is achieved by simply appending or replacing a
suffix of a sequence of changes. The flushing to disk is a straightforward instance of the flush
operation from Section 7.3 where we choose a point in the sequence that splits the differences
we wish to flush from the remaining sequence of differences that should be kept in memory.
The value that we apply to the on-disk state is the monoidal composition of the sequence of
differences we wish to flush.

7.5 Change-based pipelined databases

Here is where things start to get interesting and tricky. As discussed in Section 5.6, we wish
to pipeline reads from disk to provide the opportunity to use parallel I/O. Providing this
opportunity is not something that we can hide away in some low-level I/O layer: it will have to
be explicit in how we manage the logical state of the database. So, the purpose of this model is

17

to provide a reasonable correspondence to an implementation that could use pipelined reads.
We will also want to show that it is nevertheless mathematically equivalent to the simple model.

The goal with the pipelining of I/O reads is to initiate the I/O operations early such that the
results are already available in memory by the time they are needed later. This allows the I/O to
be overlapped with computation, and it also allows a substantial number of I/O operations to
be in progress at once, which is what provides the opportunity to use parallel I/O.

Recall the sequential pattern from Section 7.2 where the reads and transactions are based on
the immediately preceding database value.

db0

db1
=

db0 ◁
∆

db1

db2
=

db1 ◁
∆

db2

. . .

rs0 = db0|ks0
∆

db1 =
∆
tx0(rs0)

rs1 = db1|ks1
∆

db2 =
∆
tx1(rs1)

ks0 ks1

The difficulty with initiating the reads early is that the state of the database in which we initiated
the reads is not the same state as the one in which we use the read results to perform a transaction.
For example, if we naı̈vely started the reads for ks1 from db0, expecting to use it later with

∆
tx1,

then any updates applied by
∆
tx0 in db1 that might affect the read set would be lost and we would

get the wrong result.

db0 db1

db2
=

db1 ◁
∆

db2

. . .

rs1 = db0|ks1
∆

db2 =
∆
tx1(rs1)

ks1

Naı̈vely using a read set
from the wrong state

Of course, pipelining is only acceptable if we can find some way to make it semantically
equivalent to the sequential version. The trick to do so is to adjust the result of the reads so that
it is as if they had been performed against the right state of the database.

Notice in the sequential example above that db1 is db0 with some changes applied to it, and a
read set from db0 is simply a subset of db0, so if we apply the same changes to the read set, then
that should be the same as if we had performed the read from db1 in the first place. In pictorial
form, it would look like the following, with the reads of ks1 intended to be used with

∆
tx1 being

started against db0, and then later adjusted by applying the changes from
∆
tx0.

18

db0

db1
=

db0 ◁
∆

db1

db2
=

db1 ◁
∆

db2

. . .

rs0 = rs@0
0

∆

db1 =
∆
tx0(rs0)

rs1 = rs@0
1 ◁

∆

db1
∆

db2 =
∆
tx1(rs1)

rs@0
0 = db0|ks0

rs@0
1 = db0|ks1

ks0

ks1

adjusted so as-if read against db1

We can now extend this example so that after the initial step (where we perform two reads from
db0 to get things going) we always initiate a read to be used by the next-but-one transaction.
This gives us pipelining of depth one. This pattern could be extended indefinitely, and greater
(or variable) depth pipelining could be used.

db0

db1
=

db0 ◁
∆

db1

db2
=

db1 ◁
∆

db2

db3
=

db2 ◁
∆

db3

rs0 = rs@0
0

∆

db1 =
∆
tx0(rs0)

rs1 = rs@1
2 ◁

∆

db1
∆

db2 =
∆
tx1(rs1)

rs2 = rs@0
1 ◁

∆

db2
∆

db3 =
∆
tx2(rs2)

rs@0
0 = db0|ks0

rs@0
1 = db0|ks1

rs@1
2 = db1|ks2

rs@2
3 = db2|ks3

. . .

ks0

ks1 ks2 ks3

db1 = db0 ◁
∆

db1 where
∆

db1 =
∆
tx0(rs0) and rs0 = rs@0

0 and rs@0
0 = db0|ks0

db2 = db1 ◁
∆

db2 where
∆

db2 =
∆
tx1(rs1) and rs1 = rs@0

1 ◁
∆

db1 and rs@0
1 = db0|ks1

db3 = db2 ◁
∆

db3 where
∆

db3 =
∆
tx2(rs2) and rs2 = rs@1

2 ◁
∆

db2 and rs@1
2 = db1|ks2

...
And in general (for i > 1)

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi(rsi) and rsi = rs@i−1

i ◁
∆

dbi and rs@i−1
i = dbi−1|ksi

We need to clarify how exactly this is equivalent to the simple sequential model. We now have a
more interesting recurrence relation than in previous models, so we argue by induction. Due to

19

the setup step for the pipelining, we start from i = 1 rather than i = 0.

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi(rsi) and rsi = rs@i−1

i ◁
∆

dbi and rs@i−1
i = dbi−1|ksi

≡ {by substitution of rsi and rs@i−1
i }

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi

(
dbi−1|ksi

◁
∆

dbi

)
≡ {by the domain restriction shifting lemma Equation (9) }

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi

((
dbi−1 ◁

∆

dbi

)∣∣∣
ksi

)
≡ {by induction hypothesis dbi = dbi−1 ◁

∆

dbi }

dbi+1 = dbi ◁
∆

dbi+1 where
∆

dbi+1 =
∆
txi

(
dbi|ksi

)
≡ {by substitution of

∆

dbi+1}

dbi+1 = dbi ◁
∆
txi

(
dbi|ksi

)
≡ {by the restriction property Equation (6) that

∆
txi

(
db|ksi

)
=

∆
txi(db)}

dbi+1 = dbi ◁
∆
txi(dbi)

≡ {by the difference function property Equation (5) that db ◁
∆
tx(db) = tx(db)}

dbi+1 = txi(dbi)

Which is the same as Equation (4): the recurrence for the simple model.

7.6 Change-based pipelined databases in the hybrid representation

More generally, the changes we want to apply are all those that occurred between the database
state against which the read was performed and the state in which the transaction using the
read results is to be applied. Thus, we will have to carefully track and apply the changes from
where a read was initiated to where it is used. If we can do so successfully however, it seems
clear that we can obtain an arbitrary depth of pipelining, at the memory cost of tracking the
intervening changes.

Fortunately, tracking the intervening changes is relatively straightforward to do using the
hybrid representations (from Sections 7.3 and 7.4) since they already keep the recent changes in
memory.

The diagram below shows an example of the hybrid representation where several transac-
tions are performed starting from the same on-disk state. Notice how all the disk reads are
independent and so can be started early. Only the in-memory adjustments to read sets prior to
processing transactions is still sequential.

20

dbdisk
i

∆

dbmem
i

∆

dbmem
i+1
=

∆

dbmem
i ◁

∆

dbi+1

∆

dbmem
i+2
=

∆

dbmem
i+1 ◁

∆

dbi+2

∆

dbmem
i+3
=

∆

dbmem
i+2 ◁

∆

dbi+3

rs@i
i
=

dbdisk
i

∣∣∣
ksi

rs@i
i+1
=

dbdisk
i

∣∣∣
ksi+1

rs@i
i+2
=

dbdisk
i

∣∣∣
ksi+2

rsi = rs@i
i ◁

∆

dbmem
i

∆

dbi+1 =
∆
txi(rsi)

rsi+1 = rs@i
i+1 ◁

∆

dbmem
i+1

∆

dbi+2 =
∆
txi+1(rsi+1)

rsi+2 = rs@i
i+2 ◁

∆

dbmem
i+2

∆

dbi+3 =
∆
txi+2(rsi+2)

This example does not include flushing changes to disk, which does also have to be done
eventually. Doing so only marginally complicates the scheme. It involves keeping in memory
the changes between when a read was initiated and when it is used – even if some older changes
have been flushed to disk in the meantime.

References

Robert Atkey. The incremental λ-calculus and relational parametricity, 2015. https://bentnib.
org/posts/2015-04-23-incremental-lambda-calculus-and-parametricity.html.

Justin DeBrabant, Andrew Pavlo, Stephen Tu, Michael Stonebraker, and Stan Zdonik. Anti-
caching: A new approach to database management system architecture. Proc. VLDB Endow.,
6(14):1942–1953, September 2013. ISSN 2150-8097. doi: 10.14778/2556549.2556575. URL
https://doi.org/10.14778/2556549.2556575.

Ralf Hinze and Ross Paterson. Finger trees: a simple general-purpose data structure. Journal of
Functional Programming, 16(2):197–217, 2006. doi: 10.1017/S0956796805005769.

Sanket Kanjalkar, Joseph Kuo, Yunqi Li, and Andrew Miller. Short Paper: I Can’t Believe It’s Not
Stake! Resource Exhaustion Attacks on PoS, pages 62–69. 09 2019. ISBN 978-3-030-32100-0. doi:
10.1007/978-3-030-32101-7 4.

Douglas Wilson and Duncan Coutts. Storing the cardano ledger state on disk: analysis and
design options, 2021.

21

https://bentnib.org/posts/2015-04-23-incremental-lambda-calculus-and-parametricity.html
https://bentnib.org/posts/2015-04-23-incremental-lambda-calculus-and-parametricity.html
https://doi.org/10.14778/2556549.2556575

	Purpose
	Acknowledgements
	Ledger state handling in the current design
	In the ledger layer
	In the consensus layer

	Terminology and our perspective on databases
	General approach
	Inspiration from the `anti-caching' database architecture
	Reading data into memory in advance
	Differences of data structures
	Partitioned in-memory/on-disk representation
	Access to multiple (logical) ledger states
	Enabling I/O pipelining

	Notation and properties of differences
	Abstract models of hybrid on-disk/in-memory databases
	Simple sequential databases
	Change-based databases
	Hybrid on-disk / in-memory databases
	Performing transactions
	Flushing changes to disk
	Performing reads

	Multiple logical database states
	Change-based pipelined databases
	Change-based pipelined databases in the hybrid representation

	References

