INPUT | QUTPUT

A Formal Specification of the Cardano Consensus

Deliverable XXXX

Javier Diaz <javier.diaz@iohk.io>

Project: Cardano

Type: Deliverable
Due Date: XXXX

Responsible team: Formal Methods Team
Editor: Javier Diaz, IOHK
Team Leader: James Chapman, IOHK

Version 1.0
XXXX

Dissemination Level

PU | Public V

CO | Confidential, only for company distribution

DR | Draft, not for general circulation

Contents

1 Cryptographic Primitives 2
1.1 Serialization e 2
1.2 Cryptographic Hashes 2
1.3 Public-Key Cryptography 2
1.4 Digital Signatures 3
1.5 Key-Evolving Signatures 3
1.6 Verifiable Random Functions 3
2 Transition Rule Dependencies 4
3 Ledger Interface 5
4 Blockchain Layer 6
4.1 Block Definitions Lo 6
4.2 TICKN Transition e e 8
4.3 UPDN Transition 9
4.4 OCERT Transition e e e e e 10
4.5 PRTCL Transition oo 0 o 0 12
4.6 TICKF Transition e 16
4.7 CHAINHEAD Transition i 17
5 Properties 20
5.1 Header-Only Validation 20
6 Leader Value Calculation 22
6.1 Computing the leader value 22
6.2 Node eligibility 22
List of Figures
1 Definitions for serialization 2
2 Definitions for the public-key cryptographic system 2
3 Definitions for the digital signature scheme 3
4 Definitions for key-evolving signatures 3
5 Definitions for verifiable random functions 3
6 STS Rules, Sub-Rules and Dependencies 4
7 Ledger interface L 5
8 Block definitions e 7
9 Tick Nonce transition system typeso 8
10 Tick Nonce transition system rules o oL 8
11 Update Nonce transition system types 9
12 Update Nonce transition system rules 9
13 Operational Certificate transition-system types and functions 10
14 Operational Certificate transition-system rules 11
15 Protocol transition system typeso 12
16 Protocol transition system helper functions 14
17 Protocol transition system ruleso 15
18 Tick forecast transition system typeso oL 16
19 Tick forecast transition system rules o oL 16
20 Chain Head transition system types and functions 18
21 Chain Head transition system rules 0. 19

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

i

Change Log
Rev. | Date Who Team What
1 2024/06/20| Javier Diaz FM Initial version (0.1).
(IOHK)

A Formal Specification of the Cardano Consensus

Javier Diaz
javier.diaz@iohk.io

November 18, 2025

Abstract

This document provides a formal specification of the Cardano consensus layer.

List of Contributors

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

1 Cryptographic Primitives

1.1 Serialization

— TODO: Add paragraph

Types & functions

Ser : Type

encode : {T : Type} » T > Ser
decode : {T : Type} » Ser » Maybe T
- : Ser » Ser » Ser

Properties

VY {T : Type} (x : T) » decode (encode x) = just x

Figure 1: Definitions for serialization

1.2 Cryptographic Hashes
— TODO: Add paragraph and show only the relevant bits of the code below.

record isHashableSet (T : Type) : Sets: where
constructor mkIsHashableSet
field THash : Type
{ DecEq-THash [} : DecEq THash
{ Show-THash [} : Show THash
{ DecEq-T } ¢ DeckEq T
{ T-Hashable [} : Hashable T THash
open isHashableSet

record HashableSet : Type: where
constructor mkHashableSet
field T : Types { T-isHashable [} : isHashableSet T
open isHashableSet T-isHashable public

1.3 Public-Key Cryptography

The Cardano blockchain system is based on a public-key cryptographic system.

Types & functions

SKey VKey : Type
isKeyPair : SKey » VKey » Type

KeyPair = £[sk € SKey] £[vk € VKey] isKeyPair sk vk

Figure 2: Definitions for the public-key cryptographic system

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

Types & functions
Sig : Type
isSigned : VKey » Ser > Sig > Type
sign : SKey » Ser » Sig

Properties

YV ((sk , vk , _) : KeyPair) (d : Ser) (o : Sig) » sign sk d =0 » isSigned vk d o

Figure 3: Definitions for the digital signature scheme

1.4 Digital Signatures
— TODO: Add paragraph.

1.5 Key-Evolving Signatures
— TODO: Add paragraph.

Types & functions
Sig : Type
isSigned : VKey > N > Ser » Sig » Type
sign : (N > SKey) » N > Ser » Sig

Properties

Y (n: N) (sk : N> SKey) ((skn , vk , _) : KeyPair) (d : Ser) (o : Sig)
> Skn =skn-signsknd=o-» isSignedvkndo

Figure 4: Definitions for key-evolving signatures

1.6 Verifiable Random Functions
— TODO: Add paragraph.

Types & functions

Seed Proof : Type

verify : {T : Type} » VKey » Seed » Proof x T » Type
evaluate : {T : Type} » SKey » Seed » Proof x T

XOR : Seed » Seed » Seed

Properties

VY {T : Type} ((sk , vk , _) : KeyPair) (seed : Seed)
> verify {T = T} vk seed (evaluate sk seed)

Figure 5: Definitions for verifiable random functions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 4

2 Transition Rule Dependencies

Figure 6 shows all STS rules, the sub-rules they use and possible dependencies. Each node in
the graph represents one rule, the top rule being CHAINHEAD. A straight arrow from one node
to another one represents a sub-rule relationship.

An arrow with a dotted line from one node to another represents a dependency in the sense
that the output of the target rule is an input to the source one, either as part of the source state,
the environment or the signal. These dependencies are between sub-rules of a rule.

Figure 6: STS Rules, Sub-Rules and Dependencies

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 5

3 Ledger Interface

This section describes the interface exposed by the Ledger Layer which is used by the Consensus
Layer.

NewEpochState : Type
getPParams : NewEpochState » PParams
getEpoch : NewEpochState » Epoch

getPoolDelegatedStake : NewEpochState » PoolDelegatedStake
adoptGenesisDelegs : NewEpochState » Slot » NewEpochState
+—>(_,NEWEPOCH)_ : T » NewEpochState » Epoch » NewEpochState » Type

Figure 7: Ledger interface

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 6

4 Blockchain Layer

This chapter introduces the view of the blockchain layer as required for the consensus. The main
transition rule is CHAINHEAD which calls the subrules TICKF, TICKN and PRTCL.

4.1 Block Definitions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

Abstract types

HashHeader : Type -- hash of a block header
HashBBody : Type -- hash of a block body
VRFRes : Type -- VRF result value

Concrete types

BlockNo = N -- block number
CertifiedN =3[n] n<2 2512 -- [0, 22512) (64-byte VRF output)

Operational Certificate

record OCert : Type where

vkn 1 VKeyk -- operational (hot) key

n : N -- certificate issue number
Co : KESPeriod -- start KES period

o : Sig® -- cold key signature

Block Header Body

record BHBody : Type where

prevHeader : Maybe HashHeader -- hash of previous block header
issuerVk : VKey® -- block issuer

vrfvk : VKeyV -- VRF verification key
blockNo : BlockNo -- block number

slot : Slot -- block slot

vrfRes : VRFRes -- VRF result value

vrfPrf : Proof -- VRF proof

bodySize : N -- size of the block body
bodyHash : HashBBody -- block body hash

oc : OCert -- operational certificate
pv : ProtVer -- protocol version

Block Types

record BHeader : Type where
constructor [_,_]

field
body : BHBody
sig : Sig

Abstract functions

headerHash : BHeader » HashHeader -- hash of a block header

headerSize : BHeader » N -- size of a block header

slotToSeed : Slot » Seed -- big-endian encoding of the slot number in 8 bytes
prevHashToNonce : Maybe HashHeader » Nonce

serHashTolN : SerHash » CertifiedN

serHashToNonce : SerHash - Nonce

Figure 8: Block definitions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 8

4.2 TICKN Transition

The Tick Nonce Transition (TICKN) is responsible for updating the epoch nonce and the previous
epoch’s hash nonce at the start of an epoch. Its environment is shown in Figure 9 and consists
of the candidate nonce nc and the previous epoch’s last block header hash as a nonce nph. Its
state consists of the epoch nonce ne and the previous epoch’s last block header hash nonce nh.

Tick Nonce environments

record TickNonceEnv : Type where
nc : Nonce -- candidate nonce
nph : Nonce -- previous header hash as nonce

Tick Nonce states

record TickNonceState : Type where
Nne : Nonce -- epoch nonce
nh : Nonce -- nonce from hash of previous epoch's last block header

Tick Nonce transitions

+—>(_,TICKND_ : TickNonceEnv » TickNonceState » Bool » TickNonceState » Type

Figure 9: Tick Nonce transition system types

The signal to the transition rule TICKN is a marker indicating whether we are in a new
epoch. If we are in a new epoch, we update the epoch nonce and the previous hash. Otherwise,
we do nothing. The TICKN rule is shown in Figure 10.

Not-New-Epoch :

[nc,nph]t*+[ne,nh]ts —a false ,TICKN) [ne , nh] **

New-Epoch :

[nc,nph]t*+~[ne,nh]ts —a true ,TICKND [nc x nh , nph]*t*

Figure 10: Tick Nonce transition system rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 9

4.3 UPDN Transition

The Update Nonce Transition (UPDN) updates the nonces until the randomness gets fixed. The
environment is shown in Figure 11 and consists of the block nonce n. The state is shown in
Figure 11 and consists of the candidate nonce nc and the evolving nonce nv.

Update Nonce environments

record UpdateNonceEnv : Type where
n : Nonce -- new nonce

Update Nonce states

record UpdateNonceState : Type where
nv : Nonce -- evolving nonce
nc : Nonce -- candidate nonce

Update Nonce transitions

+—0_,UPDND_ : UpdateNonceEnv » UpdateNonceState » Slot » UpdateNonceState » Type

Figure 11: Update Nonce transition system types

The transition rule UPDN takes the slot s as signal and is shown in Figure 12. There are two
different cases for UPDN: one where s is not yet RandomnessStabilisationWindow! slots from the
beginning of the next epoch and one where s is less than RandomnessStabilisationWindow slots
until the start of the next epoch.

Note that in the first rule, the candidate nonce nc transitions to nv x n, not nc « n. The
reason for this is that even though the candidate nonce is frozen sometime during the epoch, we
want the two nonces to again be equal at the start of a new epoch.

Update-Both :
e s + RandomnessStabilisationWindow < firstSlot (suc® (epoch s))

[n]“+[nv,nc]“s —0s ,UPDND [nv*n,nvxn]“s

Only-Evolve :
e s + RandomnessStabilisationWindow = firstSlot (suc® (epoch s))

[n1¥r[nv,nc]¥s —0s ,UPDND [nvxn,nc]

Figure 12: Update Nonce transition system rules

INote that in pre-Conway eras StabilityWindow was used instead of RandomnessStabilisationWindow.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 10

4.4 OCERT Transition

The Operational Certificate Transition (OCERT) validates the operational certificate and signa-
ture in the block header and updates the mapping of operational certificate issue numbers. The
environment is shown in Figure 13 and consists of the set of stake pools. The state is shown
in Figure 13 and consists of the mapping of operation certificate issue numbers. Its signal is a
block header.

Operational Certificate environments
OCertEnv = P KeyHash*
Operational Certificate states
OCertState = OCertCounters
Operational Certificate transitions
+—>(_,0CERTD_ : OCertEnv » OCertState » BHeader » OCertState » Type
Operational Certificate helper function

currentIssueNo : OCertEnv » OCertState » KeyHash® » Maybe N
currentIssueNo stpools cs hk =
if hk € dom (cs ®) then
just (Llookup™ cs hk)
else
if hk € stpools then
just O
else
nothing

Figure 13: Operational Certificate transition-system types and functions

The transition rule OCERT is shown in Figure 14. From the block header body bhb we first
extract the following:

e The operational certificate oc, consisting of the hot key vkn, the certificate issue number
n, the KES period start co and the cold key signature .

e The cold key issuerVk.
e The slot slot for the block.
e The number t of KES periods that have elapsed since the start period on the certificate.

Using this we verify the preconditions of the operational certificate state transition which
are the following;:

e The KES period kp of the slot in the block header body must be greater than or equal
to the start value co listed in the operational certificate, and less than MaxKESEvo-many
KES periods after co. The value of MaxKESEvo is the agreed-upon lifetime of an operational
certificate, see [2].

e hk exists as key in the mapping of certificate issues numbers to a KES period m and that
period is less than or equal to n. Also, n must be less than or equal to the successor of m.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 11

The signature © can be verified with the cold verification key issuervk.

The KES signature o can be verified with the hot verification key vkp.

After this, the transition system updates the operational certificate state by updating the
mapping of operational certificates where it overwrites the entry of the key hk with the KES
period n.

Update-0Cert :

let [bhb , 0)] = bh; open BHBody bhb
[vkn yn,co, T]°¢ =0cC
hk = hash issuerVk
kp = kesPeriod slot
t=kp -X co
in
e Co < kp
e kp < co +< MaxKESEvo
e3[m] (just m= currentIssueNo stpools cs hk x (n=m ¥ n = suc m))
e isSigneds issuerVk (encode (vkn , n, co)) T
o isSigned* vks t (encode bhb) o

stpools + cs —(bh ,0CERT) ({ hk , n } Ut ¢s)

Figure 14: Operational Certificate transition-system rules

The OCERT rule has the following predicate failures:

1.

If the KES period is less than the KES period start in the certificate, there is a KESBe-
foreStart failure.

. If the KES period is greater than or equal to the KES period end (start 4+ MaxKESEvo) in
the certificate, there is a KESAfterEnd failure.

If the period counter in the original key hash counter mapping is larger than the period
number in the certificate, there is a CounterTooSmall failure.

. If the period number in the certificate is larger than the successor of the period counter in
the original key hash counter mapping, there is a CounterOverIncremented failure.

. If the signature of the hot key, KES period number and period start is incorrect, there is
an InvalidSignature failure.

If the KES signature using the hot key of the block header body is incorrect, there is an
InvalideKesSignature failure.

If there is no entry in the key hash to counter mapping for the cold key, there is a No-
CounterForKeyHash failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 12

4.5 PRTCL Transition

The Protocol Transition (PRTCL) calls the transition UPDN to update the evolving and candi-
date nonces, and checks the operational certificate with OCERT. Its environment is shown in
Figure 15 and consists of:

e The stake pool stake distribution pd.

e The epoch nonce no.

Its state is shown in Figure 15 and consists of
e The operational certificate issue number mapping cs.
e The evolving nonce nv.

e The candidate nonce for the next epoch nc.

Protocol environments

record PrtclEnv : Type where
pd : PoolDistr -- pool stake distribution
ne : Nonce -- epoch nonce

Protocol states

record PrtclState : Type where

cs : OCertCounters -- operational certificate issues numbers
nv : Nonce -- evolving nonce
nc : Nonce -- candidate nonce

Protocol transitions

+—(_,PRTCLD_ : PrtclEnv » PrtclState » BHeader » PrtclState » Type

Figure 15: Protocol transition system types

In Figure 16 we define a function vrfChecks which performs all the VRF related checks on
a given block header body. In addition to the block header body bhb, the function requires the
epoch nonce no, the stake distribution pd (aggregated by pool), and the active slots coefficient
f from the protocol parameters. The function checks:

e The validity of the proofs vrfPrf for the leader value and the new nonce.
e The verification key vrfHK is associated with relative stake ¢ in the stake distribution.

e The hBLeader value of bhb indicates a possible leader for this slot. The function checkLead-
erval, defined in Figure 16, performs this check.

The function vrfChecks has the following predicate failures:

1. If the VRF key is not in the pool distribution, there is a VRFKeyUnknown failure.

2. If the VRF key hash does not match the one listed in the block header, there is a VR-
FKeyWrongVRFKey failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 13

3. If the VRF generated value in the block header does not validate against the VRF certifi-
cate, there is a VRFKeyBadProof failure.

4. If the VRF generated leader value in the block header is too large compared to the relative
stake of the pool, there is a VRFLeaderValueTooBig failure.

The transition rule PRTCL is shown in Figure 17.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

14

Protocol helper functions

hBLeader : BHBody » CertifiedN
hBLeader bhb = serHashTolN (hash (encode "L" || encode vrfRes))
where open BHBody bhb

hBNonce : BHBody -» Nonce
hBNonce bhb = serHashToNonce (hash (encode "N" || encode vrfRes))
where open BHBody bhb

lookupPoolDistr : PoolDistr » KeyHash® » Maybe (@ x KeyHash")
lookupPoolDistr pd hk =
if hk € dom (pd °) then
just (lookup™ pd hk)
else
nothing

checkLeaderVal : CertifiedN » InPosUnitInterval » Q » Type
checkLeaderVal (certhN , certihprf) (f , posf , fs1) o =
if f =10 then T else

let
p = pos certiN @./ (2 » 512)
qg=100Q.-p
c=1n (100Q.- f)

in

0.1/ g Q.< exp ((0.- 0) Q.% ¢)

vrfChecks : Nonce » PoolDistr » InPosUnitInterval » BHBody » Type
vrfChecks ne pd f bhb =
case lookupPoolDistr pd hk of
A where
nothing » 1
(just (o, VvrfHK)) >
vrfHK = hash vrfvk
x verify vrfVk seed (vrfPrf , vrfRes)
x checkLeaderVal (hBLeader bhb) f o
where
open BHBody bhb
hk = hash issuerVk
seed = slotToSeed slot XOR nonceToSeed ne

Figure 16: Protocol transition system helper functions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

15

Evolve-Prtcl :
let [bhb , 0) = bh; open BHBody bhb
n = hBNonce bhb
in
e[njl“s+[nv, nc]¥s —slot ,UuPDND [nv' , nc’ Jus
e dom (pd ®) - cs —(bh ,0CERTD cs’
e vrfChecks ne pd ActiveSlotCoeff bhb

[pd,ne JP¢+[cs,nv,nc]Ps—0bh ,PRTCL) [cs’ , nv' , nc’ JPs

Figure 17: Protocol transition system rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 16

4.6 TICKF Transition

The Tick Forecast Transition (TICKF) performs some chain level upkeep. Its state is shown in
Figure 18 and consists of the epoch specific state NewEpochState necessary for the NEWEPOCH
transition and its signal is the current slot.

Tick Forecast transitions

+—(_,TICKF)_ : T » NewEpochState » Slot » NewEpochState » Type

Figure 18: Tick forecast transition system types

The transition TICKF is shown in Figure 19. Part of the upkeep is updating the genesis
key delegation mapping according to the future delegation mapping using the helper function
adoptGenesisDelegs. One sub-transition is done: The NEWEPOCH transition performs any state
change needed if it is the first block of a new epoch.

Tick-Forecast :
let forecast = adoptGenesisDelegs nes’ s
in
e _+nes —(epoch s ,NEWEPOCH) nes’

_+nes — (s ,TICKF) forecast

Figure 19: Tick forecast transition system rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 17

4.7

CHAINHEAD Transition

The Chain Head Transition rule (CHAINHEAD) is the main rule of the blockchain layer part of
the STS. It calls TICKF, TICKN, and PRTCL, as sub-rules.

Its state is shown in Figure 20 and consists of the epoch specific state NewEpochState and its
signal is a block header. Its state is shown in Figure 20 and it consists of the following;:

The operational certificate issue number map cs.
The epoch nonce no.

The evolving nonce nv.

The candidate nonce nc.

The previous epoch hash nonce nh.

The last header hash h.

The last slot s?.

The last block number b#.

The transition checks the following things (via the functions chainChecks and prtlSeqChecks
from Figure 20):

The slot in the block header body is larger than the last slot recorded.
The block number increases by exactly one.

The previous hash listed in the block header matches the previous block header hash which
was recorded.

The size of the block header is less than or equal to the maximal size that the protocol
parameters allow for block headers.

The size of the block body, as claimed by the block header, is less than or equal to the
maximal size that the protocol parameters allow for block bodies.

The node is not obsolete, meaning that the major component of the protocol version in
the protocol parameters is not bigger than the constant MaxMajorPV.

The transition rule CHAINHEAD is shown in Figure 21 and has the following predicate
failures:

1.

If the slot of the block header body is not larger than the last slot, there is a WrongSlot-
Interval failure.

. If the block number does not increase by exactly one, there is a WrongBlockNo failure.

If the hash of the previous header of the block header body is not equal to the last header
hash, there is a WrongBlockSequence failure.

If the size of the block header is larger than the maximally allowed size, there is a Head-
erSizeTooLarge failure.

. If the size of the block body is larger than the maximally allowed size, there is a Block-

SizeTooLarge failure.

If the major component of the protocol version is larger than MaxMajorPV, there is a Obso-
leteNode failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 18

Chain Head environments
ChainHeadEnv = NewEpochState
Chain Head states

record LastAppliedBlock : Type where
b? : BlockNo -- last block number
s? : Slot -- last slot
h : HashHeader -- latest header hash

record ChainHeadState : Type where
cs : OCertCounters -- operational certificate issue numbers

ne : Nonce -- epoch nonce

nv : Nonce -- evolving nonce

nc : Nonce -- candidate nonce

nh : Nonce -- nonce from hash of last epoch’s last header

lab : Maybe LastAppliedBlock -- latest applied block
Chain Head transitions
+—>(_,CHAINHEADD_ : ChainHeadEnv » ChainHeadState » BHeader » ChainHeadState » Type
Chain Head helper functions

extractPoolDistr : PoolDelegatedStake » PoolDistr
extractPoolDistr pds = mapValues (x-map: stakeToProportion) pds
where
totalStake : Coin
totalStake = Y[¢ « mapValues proj: pds] ¢

stakeToProportion : Coin~> @

stakeToProportion ¢ = case totalStake of A where
0 » normalize 0 1
t@(suc n) » normalize c t

chainChecks : N> N x N x ProtVer » BHeader > Type
chainChecks maxpv (maxBHSize , maxBBSize , protocolVersion) bh =
m < maxpv x headerSize bh < maxBHSize x bodySize < maxBBSize
where
m = proj: protocolVersion
open BHeader; open BHBody (bh .body)

lastAppliedHash : Maybe LastAppliedBlock » Maybe HashHeader
lastAppliedHash nothing = nothing
lastAppliedHash (just [-, —, h]¢) = just h

prtlSeqChecks : Maybe LastAppliedBlock » BHeader » Type
prtlSeqChecks nothing bh =1
prtlSeqChecks Tab@(just [b€ , s¢ , _ |£) bh = sf < slot x bf + 1 = blockNo x ph = prevHeade
where
open BHeader; open BHBody (bh .body)
ph = lastAppliedHash lab

Figure 20: Chain Head transition system types and functions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX)

19

Chain-Head :
let [bhb , _) = bh; open BHBody bhb
e: = getEpoch nes
ez = getEpoch forecast
ne = (e: # ez2)
pp = getPParams forecast; open PParams
npn = prevHashToNonce (lastAppliedHash lab)
pd = extractPoolDistr (getPoolDelegatedStake forecast)
lab’ = just [blockNo , slot , headerHash bh |2
in
e prtlSeqChecks Llab bh
e _+nes —(slot ,TICKFD forecast
e chainChecks MaxMajorPV (pp .maxHeaderSize , pp .maxBlockSize , pp .pv) bh
e[nc,npn |t r+[ne,nh]t —0ne ,TICKND [ne" , nh"]*s
e[pd,ne"]+ cs,nv, nc]Ps —>0bh ,PRTCL) [cs' , nv' , nc’ |Ps

nes+[cs,ne,nv,nc,nh, lab]¢s —(bh ,CHAINHEADD
[es" ,ne” ,nv' ,nc’” ,nh" , lab”]¢*

Figure 21: Chain Head transition system rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 20

5 Properties

This section describes the properties that the consensus layer should have. The goal is to include
these properties in the executable specification to enable e.g. property-based testing or formal
verification.

5.1 Header-Only Validation

In any given chain state, the consensus layer needs to be able to validate the block headers
without having to download the block bodies. Property 5.1 states that if an extension of a
chain that spans less than StabilityWindow slots is valid, then validating the headers of that
extension is also valid. This property is useful for its converse: if the header validation check for
a sequence of headers does not pass, then we know that the block validation that corresponds to
those headers will not pass either. In these properties, we refer to the CHAIN transition system
as defined in [3].

Property 5.1 (Header only validation). For all states s with slot number t, and chain extensions
E with corresponding headers H such that:

0 < tg —t < StabilityWindow
we have:

E « ~ H %~
Fs——" — nesk5§ ———*3
chain chainhead

where s = (nes, §), tg is the maximum slot number appearing in the blocks contained in E, and
H is obtained from E by extracting the header from each block in E.

Property 5.2 (Body only validation). For all states s with slot number ¢, and chain extensions
E = [by, ..., by] with corresponding headers H = [hy, ..., h,] such that:

0 < tg — t < StabilityWindow

we have that for all i € [1,n]:

3 H o [borbii] . hy
nes 5§ ——— s\ (nes, §) ——=%s; 1 = nes' 5.1 ———— s,
chainhead chain chainhead

where s = (nes, §), s;_1 = (nes’, §;_1), tg is the maximum slot number appearing in the blocks
contained in E.

Property 5.2 states that if we validate a sequence of headers, we can validate their bodies
independently and be sure that the blocks will pass the chain validation rule. To see this,
given an environment e and initial state s, assume that a sequence of headers H = [hy, ..., hy]
corresponding to blocks in E = [by,...,b,] is valid according to the CHAINHEAD transition
system:

x H %l
nest§ ———*§
chainhead

Assume the bodies of E are valid according to the BBODY rules (defined in [3]), but E is not
valid according to the CHAIN rule. Assume that there is a b; € E such that it is the first block
such that does not pass the CHAIN validation. Then:

[bo,-bj1]
% S .

 (nes, 3) ;

chain

2i.e. the component s; of the last applied block of s equals t

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 21

But by Property 5.2 we know that

h:
nes; - §; ———— §;
]] chainhead i+l
which means that block b; has valid headers, and this in turn means that the validation of b;
according to the chain rules must have failed because it contained an invalid block body. But
this contradicts our assumption that the block bodies were valid.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 22

Values associated with the leader value calculations

certNat € {n|n € N,n € [0,2°12)} Certified natural value from VRF
fel01] Active slot coefficient
o€ [0,1] Stake proportion

6 Leader Value Calculation

This section details how we determine whether a node is entitled to lead (under the Praos
protocol) given the output of its verifiable random function calculation.

6.1 Computing the leader value

The verifiable random function gives us a 64-byte random output. We interpret this as a natural
number certNat in the range [0,2°12).

6.2 Node eligibility
As per [1], a node is eligible to lead when its leader value p <1 — (1 —). We have

p<1-(1-f)°
1
— (1_;?) <exp(—c-In(1-f))

The latter inequality can be efficiently computed through use of its Taylor expansion and
error estimation to stop computing terms once we are certain that the result will be either above
or below the target value.

We carry out all computations using fixed precision arithmetic (specifically, we use 34 decimal
bits of precision, since this is enough to represent the fraction of a single lovelace.)

As such, we define the following:

certNat
— T2
q=1-p
c=In(1-f)

and define the function checkLeaderVal as follows:

True, f=1

checkLeaderVal certNat o f = { % <exp(—0-c), otherwise

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 23

References

[1] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake protocol. Cryptology ePrint Archive,
Paper 2017/573, 2017. https://eprint.iacr.org/2017/573.

[2] IOHK Formal Methods Team. Design specification for delegation and incentives in cardano,
iohk deliverable sl-d1. https://github.com/intersectmbo/cardano-ledger/releases/
latest/download/shelley-delegation.pdf, 2018.

[3] IOHK Formal Methods Team. A formal specification of the cardano ledger. https://github.

com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf,
2019.

https://eprint.iacr.org/2017/573
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-delegation.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-delegation.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf

	Cryptographic Primitives
	Serialization
	Cryptographic Hashes
	Public-Key Cryptography
	Digital Signatures
	Key-Evolving Signatures
	Verifiable Random Functions

	Transition Rule Dependencies
	Ledger Interface
	Blockchain Layer
	Block Definitions
	TICKN Transition
	UPDN Transition
	OCERT Transition
	PRTCL Transition
	TICKF Transition
	CHAINHEAD Transition

	Properties
	Header-Only Validation

	Leader Value Calculation
	Computing the leader value
	Node eligibility

