
A Formal Specification of the Cardano Consensus

Deliverable XXXX

Javier Díaz <javier.diaz@iohk.io>

Project: Cardano

Type: Deliverable
Due Date: XXXX

Responsible team: Formal Methods Team
Editor: Javier Díaz, IOHK

Team Leader: James Chapman, IOHK

Version 1.0
XXXX

Dissemination Level
PU Public

√
CO Confidential, only for company distribution
DR Draft, not for general circulation

Contents

1 Transition Rule Dependencies 2

2 Common Interface 3
2.1 NEWEPOCH Transition . 3

3 Blockchain Layer 4
3.1 Block Definitions . 4
3.2 TICKN Transition . 7
3.3 UPDN Transition . 7
3.4 OCERT Transition . 7
3.5 Verifiable Random Function . 10
3.6 PRTCL Transition . 12
3.7 TICKF Transition . 14
3.8 CHAINHEAD Transition . 15

4 Properties 18
4.1 Header-Only Validation . 18

5 Leader Value Calculation 20
5.1 Computing the leader value . 20
5.2 Node eligibility . 20

References 21

A Cryptographic Details 22
A.1 Abstract functions . 22

List of Figures

1 STS Rules, Sub-Rules and Dependencies . 2
2 New Epoch transition-system types . 3
3 Block Definitions . 5
4 Helper Functions used for Blocks . 6
5 Tick Nonce types . 7
6 Tick Nonce rules . 7
7 Update Nonce transition-system types . 8
8 Update Nonce rules . 8
9 Operational Certificate transition-system types . 9
10 Operational Certificate rules . 9
11 VRF helper functions . 10
12 Protocol transition-system types . 12
13 Protocol rules . 12
14 Tick Forecast transition-system types . 14
15 Tick Forecast rules . 14
16 Chain Head transition-system types . 16
17 Helper functions used in the Chain Head transition 16
18 Chain Head rules . 17

i

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) ii

Change Log

Rev. Date Who Team What
1 2024/03/01 Javier Dı́az FM

(IOHK)
Initial version (0.1).

A Formal Specification of the Cardano Consensus

Javier Dı́az
javier.diaz@iohk.io

December 10, 2024

Abstract

This document provides a formal specification of the Cardano consensus layer.

List of Contributors

...

1

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 2

1 Transition Rule Dependencies

Figure 1 shows all STS rules, the sub-rules they use and possible dependencies. Each node in
the graph represents one rule, the top rule being CHAINHEAD. A straight arrow from one node
to another one represents a sub-rule relationship.

An arrow with a dotted line from one node to another represents a dependency in the sense
that the output of the target rule is an input to the source one, either as part of the source state,
the environment or the signal. These dependencies are between sub-rules of a rule.

CHAINHEAD

PRTCL

TICKN

TICKF

UPDN OCERT

NEWEPOCH

Figure 1: STS Rules, Sub-Rules and Dependencies

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 3

2 Common Interface

2.1 NEWEPOCH Transition

The New Epoch Transition (NEWEPOCH) performs some upkeep when a new epoch begins.

New Epoch Transitions

⊢ −−−−−−→
NEWEPOCH

⊆ P (NewEpochState× Epoch×NewEpochState)

Figure 2: New Epoch transition-system types

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 4

3 Blockchain Layer

This chapter introduces the view of the blockchain layer as required for the consensus. The main
transition rule is CHAINHEAD which calls the subrules TICKF, TICKN and PRTCL.

3.1 Block Definitions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 5

Abstract types
h ∈ HashHeader hash of a block header

hb ∈ HashBBody hash of a block body
bn ∈ BlockNo block number
η ∈ Nonce nonce

vrfRes ∈ VRFRes VRF result value

Operational Certificate

OCert =

vkhot ∈ VKeyev operational (hot) key

n ∈ N certificate issue number
c0 ∈ KESPeriod start KES period
σ ∈ Sig cold key signature

Block Header Body

BHBody =

prevHeader ∈ HashHeader? hash of previous block header
issuerVk ∈ VKey block issuer

vrfVk ∈ VKey VRF verification key
blockNo ∈ BlockNo block number

slot ∈ Slot block slot
vrfRes ∈ VRFRes VRF result value
vrfPrf ∈ Proof VRF proof

bodySize ∈ N size of the block body
bodyHash ∈ HashBBody block body hash

oc ∈ OCert operational certificate
pv ∈ ProtVer protocol version

Block Types

bh ∈ BHeader = BHBody× Sig

Abstract functions

⋆ ∈ Nonce → Nonce → Nonce binary nonce operation
headerHash ∈ BHeader → HashHeader hash of a block header
headerSize ∈ BHeader → N size of a block header
slotToSeed ∈ Slot → Seed convert a slot to a seed

nonceToSeed ∈ Nonce → Seed convert a nonce to a seed
prevHashToNonce ∈ HashHeader? → Seed convert an optional header hash to a seed

Accessor Functions

blockHeader ∈ Block → BHeader headerBody ∈ BHeader → BHBody
headerSig ∈ BHeader → Sig hBVkCold ∈ BHBody → VKey

hBVrfVk ∈ BHBody → VKey hBPrevHeader ∈ BHBody → HashHeader?

hBSlot ∈ BHBody → Slot hBBlockNo ∈ BHBody → BlockNo
hBVrfRes ∈ BHBody → VRFRes hBVrfPrf ∈ BHBody → Proof

hBBodySize ∈ BHBody → N hBBodyHash ∈ BHBody → HashBBody
hBOCert ∈ BHBody → OCert hBProtVer ∈ BHBody → ProtVer

Figure 3: Block Definitions

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 6

Block Helper Functions

hBLeader ∈ BHBody → N

hBLeader bhb = hash (“L” | (hBVrfRes bhb))

hBNonce ∈ BHBody → Nonce

hBNonce bhb = hash (“N” | (hBVrfRes bhb))

Figure 4: Helper Functions used for Blocks

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 7

Tick Nonce environments

TickNonceEnv =

(
ηc ∈ Nonce candidate nonce

ηph ∈ Nonce previous header hash as nonce

)
Tick Nonce states

TickNonceState =

(
η0 ∈ Nonce epoch nonce
ηh ∈ Nonce nonce from hash of previous epoch’s last block header

)
Figure 5: Tick Nonce types

3.2 TICKN Transition

The Tick Nonce Transition (TICKN) is responsible for updating the epoch nonce and the previous
epoch’s hash nonce at the start of an epoch. Its environment is shown in Figure 5 and consists of
the candidate nonce ηc and the previous epoch’s last block header hash as a nonce ηph. Its state
consists of the epoch nonce η0 and the previous epoch’s last block header hash nonce ηh.

The signal to the transition rule TICKN is a marker indicating whether we are in a new epoch.
If we are in a new epoch, we update the epoch nonce and the previous hash. Otherwise, we do
nothing.

Not-New-Epoch
ηc
ηph

⊢
(

η0
ηh

)
False−−−→

TICKN

(
η0
ηh

) (1)

New-Epoch
ηc
ηph

⊢
(

η0
ηh

)
True−−−→

TICKN

(
ηc ⋆ ηh

ηph

) (2)

Figure 6: Tick Nonce rules

3.3 UPDN Transition

The Update Nonce Transition (UPDN) updates the nonces until the randomness gets fixed. The
environment is shown in Figure 7 and consists of the block nonce η. The state is shown in
Figure 7 and consists of the candidate nonce ηc and the evolving nonce ηv.

The transition rule UPDN takes the slot s as signal. There are two different cases for UPDN:
one where s is not yet RandomnessStabilisationWindow1 slots from the beginning of the next
epoch and one where s is less than RandomnessStabilisationWindow slots until the start of the
next epoch.

Note that in 3, the candidate nonce ηc transitions to ηv ⋆ η, not ηc ⋆ η. The reason for this is
that even though the candidate nonce is frozen sometime during the epoch, we want the two
nonces to again be equal at the start of a new epoch.

3.4 OCERT Transition

The Operational Certificate Transition (OCERT) environment consists of the set of stake pools
stpools. Its state is the mapping of operation certificate issue numbers. Its signal is a block header.

1Note that in pre-Conway eras StabilityWindow was used instead of RandomnessStabilisationWindow.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 8

Update Nonce environments

UpdateNonceEnv =
(

η ∈ Nonce new nonce
)

Update Nonce states

UpdateNonceState =

(
ηv ∈ Nonce evolving nonce
ηc ∈ Nonce candidate nonce

)
Update Nonce Transitions

⊢ −−−→
UPDN

⊆ P (UpdateNonceEnv× UpdateNonceState× Slot× UpdateNonceState)

Figure 7: Update Nonce transition-system types

Update-Both
s < firstSlot ((epoch s) + 1)− RandomnessStabilisationWindow

η ⊢
(

ηv
ηc

)
s−−−→

UPDN

(
ηv ⋆ η
ηv ⋆ η

) (3)

Only-Evolve
s ≥ firstSlot ((epoch s) + 1)− RandomnessStabilisationWindow

η ⊢
(

ηv
ηc

)
s−−−→

UPDN

(
ηv ⋆ η

ηc

) (4)

Figure 8: Update Nonce rules

The transition rule OCERT is shown in Figure 10. From the block header body bhb we first
extract the following:

• The operational certificate, consisting of the hot key vkhot, the certificate issue number n,
the KES period start c0 and the cold key signature τ.

• The cold key vkcold.

• The slot s for the block.

• The number of KES periods that have elapsed since the start period on the certificate.

Using this we verify the preconditions of the operational certificate state transition which
are the following:

• The KES period of the slot in the block header body must be greater than or equal to the
start value c0 listed in the operational certificate, and less than MaxKESEvo-many KES
periods after c0. The value of MaxKESEvo is the agreed-upon lifetime of an operational
certificate, see [SL-D1].

• hk exists as key in the mapping of certificate issues numbers to a KES period m and that
period is less than or equal to n. Also, n must be less than or equal to the successor of m.

• The signature τ can be verified with the cold verification key vkcold.

• The KES signature σ can be verified with the hot verification key vkhot.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 9

Operational Certificate Transitions

⊢ −−−→
OCERT

⊆ P (P KeyHash×KeyHashpool 7→ N × BHeader×KeyHashpool 7→ N)

Operational Certificate helper function

currentIssueNo ∈ P KeyHash → (KeyHashpool 7→ N) → KeyHashpool → N?

currentIssueNo stpools cs hk =

hk 7→ n ∈ cs n
hk ∈ stpools 0
otherwise 3 (7)

Figure 9: Operational Certificate transition-system types

After this, the transition system updates the operational certificate state by updating the
mapping of operational certificates where it overwrites the entry of the key hk with the KES
period n.

OCert

(bhb, σ) := bh (vkhot, n, c0, τ) := hBOCert bhb vkcold := hBVkCold bhb
hk := hashKey vkcold s := hBSlot bhb t := kesPeriod s − c0

c0
(1)
≤ kesPeriod s

(2)
< c0 +MaxKESEvo

currentIssueNo stpools cs hk = m n ∈ {
(3)
m ,

(4)
m + 1}

Vvkcold
J(vkhot, n, c0)Kτ (5) VKES

vkhot
JbhbKt

σ (6)

stpools ⊢ cs bh−−−→
OCERT

cs ∪−→{hk 7→ n}
(5)

Figure 10: Operational Certificate rules

The OCERT rule has the following predicate failures:

1. If the KES period is less than the KES period start in the certificate, there is a KESBeforeStart
failure.

2. If the KES period is greater than or equal to the KES period end (start + MaxKESEvo) in
the certificate, there is a KESAfterEnd failure.

3. If the period counter in the original key hash counter mapping is larger than the period
number in the certificate, there is a CounterTooSmall failure.

4. If the period number in the certificate is larger than the successor of the period counter in
the original key hash counter mapping, there is a CounterOverIncremented failure.

5. If the signature of the hot key, KES period number and period start is incorrect, there is an
InvalidSignature failure.

6. If the KES signature using the hot key of the block header body is incorrect, there is an
InvalideKesSignature failure.

7. If there is no entry in the key hash to counter mapping for the cold key, there is a NoCoun-
terForKeyHash failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 10

issuerIDfromBHBody ∈ BHBody → KeyHashpool

issuerIDfromBHBody = hashKey ◦ hBVkCold

vrfChecks ∈ Nonce → BHBody → Bool

vrfChecks η0 bhb = verifyVrfVRFRes vrfK ((slotToSeed slot) XOR (nonceToSeed η0)) (proof , value)
where

slot := hBSlot bhb
vrfK := hBVrfVk bhb
value := hBVrfRes bhb
proof := hBVrfPrf bhb

praosVrfChecks ∈ Nonce → PoolDistr → (0, 1] → BHBody → Bool

praosVrfChecks η0 pd f bhb =

hk 7→ (σ, vrfHK) ∈ pd (1)
∧ vrfHK = hashKey vrfK (2)
∧ vrfChecks η0 bhb (3)
∧ checkLeaderVal (hBLeader bhb) σ f (4)

where
hk := issuerIDfromBHBody bhb
vrfK := hBVrfVk bhb

Figure 11: VRF helper functions

3.5 Verifiable Random Function

In this section we define a function praosVrfChecks which performs all the VRF related checks
on a given block header body. In addition to the block header body, the function requires the
epoch nonce, the stake distribution (aggregated by pool), and the active slots coefficient from
the protocol parameters. The function checks:

• The validity of the proofs for the leader value and the new nonce.

• The verification key is associated with relative stake σ in the stake distribution.

• The hBLeader value of bhb indicates a possible leader for this slot. The function checkLeaderVal
is defined in 5.

The definition of praosVrfChecks is shown in Figure 11 and has the following predicate
failures:

1. If the VRF key is not in the pool distribution, there is a VRFKeyUnknown failure.

2. If the VRF key hash does not match the one listed in the block header, there is a VRFKey-
WrongVRFKey failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 11

3. If the VRF generated value in the block header does not validate against the VRF certificate,
there is a VRFKeyBadProof failure.

4. If the VRF generated leader value in the block header is too large compared to the relative
stake of the pool, there is a VRFLeaderValueTooBig failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 12

Protocol environments

PrtclEnv =

(
pd ∈ PoolDistr pool stake distribution
η0 ∈ Nonce epoch nonce

)
Protocol states

PrtclState =

 cs ∈ KeyHashpool 7→ N operational certificate issues numbers
ηv ∈ Nonce evolving nonce
ηc ∈ Nonce candidate nonce

Protocol Transitions

⊢ −−−→
PRTCL

⊆ P (PrtclEnv× PrtclState× BHeader× PrtclState)

Figure 12: Protocol transition-system types

3.6 PRTCL Transition

The Protocol Transition (PRTCL) calls the transition UPDN to update the evolving and candidate
nonces, and checks the operational certificate with OCERT.

The environments for this transition are:

• The stake pool stake distribution pd.

• The epoch nonce η0.

The states for this transition consists of:

• The operational certificate issue number mapping.

• The evolving nonce.

• The candidate nonce for the next epoch.

PRTCL

bhb := headerBody bh η := hBNonce bhb slot := hBSlot bhb

η ⊢
(

ηv
ηc

)
slot−−−→

UPDN

(
η′

v
η′

c

)
dom pd ⊢ cs bh−−−→

OCERT
cs′

praosVrfChecks η0 pd ActiveSlotCoeff bhb

pd
η0

⊢

 cs
ηv
ηc

 bh−−−→
PRTCL

 cs′

η′v
η′c

(6)

Figure 13: Protocol rules

This transition establishes that a block producer is in fact authorized. Since there are three
key pairs involved (cold keys, VRF keys, and hot KES keys) it is worth examining the interaction
closely.

• First we check the operational certificate with OCERT. This uses the cold verification key
given in the block header. We do not yet trust that this key is a registered pool key. If this

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 13

transition is successful, we know that the cold key in the block header has authorized the
block.

• Next, in the vrfChecks predicate, we check that the hash of this cold key is in the mapping
pd, and that it maps to (σ, hkvrf), where (σ, hkvrf) is the hash of the VRF key in the header.
If praosVrfChecks returns true, then we know that the cold key in the block header was a
registered stake pool at the beginning of the previous epoch, and that it is indeed registered
with the VRF key listed in the header.

• Finally, we use the VRF verification key in the header, along with the VRF proofs in the
header, to check that the operator is allowed to produce the block.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 14

Tick Forecast Transitions

⊢ −−−→
TICKF

⊆ P (NewEpochState× Slot×NewEpochState)

Tick Forecast helper function

adoptGenesisDelegs ∈ EpochState → Slot → EpochState

adoptGenesisDelegs es slot = es′

where
(acnt, ss, (us, (ds, ps)), prevPp, pp) := es
(rewards, delegations, ptrs, fGenDelegs, genDelegs, irwd) := ds
curr := {(s, gkh) 7→ (vkh, vrf) ∈ fGenDelegs | s ≤ slot}
fGenDelegs′ := fGenDelegs \ curr

genDelegs′ :=

{
gkh 7→ (vkh, vrf)

∣∣∣∣∣ (s, gkh) 7→ (vkh, vrf) ∈ curr
s = max{s′ | (s′, gkh) ∈ dom curr}

}
ds′ := (rewards, delegations, ptrs, fGenDelegs′, genDelegs ∪−→ genDelegs′, irwd)

es′ := (acnt, ss, (us, (ds′, ps)), prevPp, pp)

Figure 14: Tick Forecast transition-system types

3.7 TICKF Transition

The Tick Forecast Transition (TICKF) performs some chain level upkeep. The state is the epoch
specific state necessary for the NEWEPOCH transition.

Part of the upkeep is updating the genesis key delegation mapping according to the future
delegation mapping. For each genesis key, we adopt the most recent delegation in fGenDelegs
that is past the current slot, and any future genesis key delegations past the current slot is
removed. The helper function adoptGenesisDelegs accomplishes the update.

The TICKF transition rule is shown in Figure 15. The signal is a slot s.
One sub-transition is done: The NEWEPOCH transition performs any state change needed if

it is the first block of a new epoch.

TickForecast

⊢ nes
epoch s−−−−−−→

NEWEPOCH
nes′

(e′ℓ, b′prev, b′cur, es′, ru′, pd′) := nes′

es′′ := adoptGenesisDelegs es′ s
forecast := (e′ℓ, b′prev, b′cur, es′′, ru′, pd′)

⊢ nes s−−−→
TICKF

forecast
(7)

Figure 15: Tick Forecast rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 15

3.8 CHAINHEAD Transition

The Chain Head Transition rule (CHAINHEAD) is the main rule of the blockchain layer part of
the STS. It calls TICKF, TICKN, and PRTCL, as sub-rules.

The transition checks the following things: (via chainChecks and prtlSeqChecks from Fig-
ure 17):

• The slot in the block header body is larger than the last slot recorded.

• The block number increases by exactly one.

• The previous hash listed in the block header matches the previous block header hash
which was recorded.

• The size of the block header is less than or equal to the maximal size that the protocol
parameters allow for block headers.

• The size of the block body, as claimed by the block header, is less than or equal to the
maximal size that the protocol parameters allow for block bodies.

• The node is not obsolete, meaning that the major component of the protocol version in the
protocol parameters is not bigger than the constant MaxMajorPV.

The CHAINHEAD state is shown in Figure 16, it consists of the following:

• The operational certificate issue number map cs.

• The epoch nonce η0.

• The evolving nonce ηv.

• The candidate nonce ηc.

• The previous epoch hash nonce ηh.

• The last header hash h.

• The last slot sℓ.

• The last block number bℓ.

The CHAINHEAD transition rule is shown in Figure 18. It contains a new epoch state nes in
the environment and its signal is a block header bh. The transition uses a few helper functions
defined in Figure 17.

The CHAINHEAD transition rule has the following predicate failures:

1. If the slot of the block header body is not larger than the last slot, there is a WrongSlotInterval
failure.

2. If the block number does not increase by exactly one, there is a WrongBlockNo failure.

3. If the hash of the previous header of the block header body is not equal to the last header
hash, there is a WrongBlockSequence failure.

4. If the size of the block header is larger than the maximally allowed size, there is a Header-
SizeTooLarge failure.

5. If the size of the block body is larger than the maximally allowed size, there is a BlockSize-
TooLarge failure.

6. If the major component of the protocol version is larger than MaxMajorPV, there is a
ObsoleteNode failure.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 16

Chain Head states

LastAppliedBlock =

 bℓ ∈ BlockNo last block number
sℓ ∈ Slot last slot
h ∈ HashHeader latest header hash

ChainHeadState =

cs ∈ KeyHashpool 7→ N operational certificate issue numbers
η0 ∈ Nonce epoch nonce
ηv ∈ Nonce evolving nonce
ηc ∈ Nonce candidate nonce
ηh ∈ Nonce nonce from hash of last epoch’s last header
lab ∈ LastAppliedBlock? latest applied block

Chain Head Transitions

⊢ −−−−−−−→
CHAINHEAD

⊆ P (NewEpochState× ChainHeadState× BHeader× ChainHeadState)

Figure 16: Chain Head transition-system types

Chain Head Transition Helper Functions

chainChecks ∈ N → (N, N,ProtVer) → BHeader → Bool

chainChecks maxpv (maxBHSize, maxBBSize, protocolVersion) bh =

m
(6)
≤ maxpv

∧ headerSize bh
(4)
≤ maxBHSize

∧ hBBodySize (headerBody bh)
(5)
≤ maxBBSize

where (m,) := protocolVersion

lastAppliedHash ∈ LastAppliedBlock? → HashHeader?

lastAppliedHash lab =

{
3 lab = 3

h lab = (, , h)

prtlSeqChecks ∈ LastAppliedBlock? → BHeader → Bool

prtlSeqChecks lab bh =

True lab = 3

sℓ
(1)
< slot ∧ bℓ + 1

(2)
= bn ∧ ph

(3)
= hBPrevHeader bhb lab = (bℓ, sℓ,)

where
bhb := headerBody bh
bn := hBBlockNo bhb
slot := hBSlot bhb
ph := lastAppliedHash lab

Figure 17: Helper functions used in the Chain Head transition

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 17

ChainHead

bhb := headerBody bh s := hBSlot bhb

prtlSeqChecks lab bh

⊢ nes s−−−→
TICKF

forecast

(e1, , , , ,) := nes
(e2, , , es, , pd) := forecast

(, , , , pp) := es
ne := e1 ̸= e2

ηph := prevHashToNonce (lastAppliedHash lab)

chainChecks MaxMajorPV (maxHeaderSize pp, maxBlockSize pp, pv pp) bh

ηc
ηph

⊢
(

η0
ηh

)
ne−−−→

TICKN

(
η′

0
η′

h

)

pd
η′

0
⊢

 cs
ηv
ηc

 bh−−−→
PRTCL

 cs′

η′
v

η′
c

lab′ := (hBBlockNo bhb, s, headerHash bh)

nes ⊢

cs
η0
ηv
ηc
ηh
lab

bh−−−−−−−→

CHAINHEAD

cs′

η′
0

η′
v

η′
c

η′
h

lab′

(8)

Figure 18: Chain Head rules

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 18

4 Properties

This section describes the properties that the consensus layer should have. The goal is to include
these properties in the executable specification to enable e.g. property-based testing or formal
verification.

4.1 Header-Only Validation

In any given chain state, the consensus layer needs to be able to validate the block headers
without having to download the block bodies. Property 4.1 states that if an extension of a chain
that spans less than StabilityWindow slots is valid, then validating the headers of that extension is
also valid. This property is useful for its converse: if the header validation check for a sequence
of headers does not pass, then we know that the block validation that corresponds to those
headers will not pass either. In these properties, we refer to the CHAIN transition system as
defined in [SL-D5].

Property 4.1 (Header only validation). For all states s with slot number t2, and chain extensions
E with corresponding headers H such that:

0 ≤ tE − t ≤ StabilityWindow

we have:
⊢ s E−−−→

CHAIN

∗s′ =⇒ nes ⊢ s̃ H−−−−−−−→
CHAINHEAD

∗ s̃′

where s = (nes, s̃), tE is the maximum slot number appearing in the blocks contained in E, and
H is obtained from E by applying blockHeader to each block in E.

Property 4.2 (Body only validation). For all states s with slot number t, and chain extensions
E = [b0, . . . , bn] with corresponding headers H = [h0, . . . , hn] such that:

0 ≤ tE − t ≤ StabilityWindow

we have that for all i ∈ [1, n]:

nes ⊢ s̃ H−−−−−−−→
CHAINHEAD

∗sh∧ ⊢ (nes, s̃)
[b0...bi−1]−−−−−→

CHAIN

∗si−1 =⇒ nes′ ⊢ s̃i−1
hi−−−−−−−→

CHAINHEAD
s′h

where s = (nes, s̃), si−1 = (nes′, s̃i−1), tE is the maximum slot number appearing in the blocks
contained in E.

Property 4.2 states that if we validate a sequence of headers, we can validate their bodies
independently and be sure that the blocks will pass the chain validation rule. To see this,
given an environment e and initial state s, assume that a sequence of headers H = [h0, . . . , hn]
corresponding to blocks in E = [b0, . . . , bn] is valid according to the CHAINHEAD transition
system:

nes ⊢ s̃ H−−−−−−−→
CHAINHEAD

∗ s̃′

Assume the bodies of E are valid according to the BBODY rules (defined in [SL-D5]), but E is
not valid according to the CHAIN rule. Assume that there is a bj ∈ E such that it is the first block
such that does not pass the CHAIN validation. Then:

⊢ (nes, s̃)
[b0,...bj−1]−−−−−→

CHAIN

∗sj

2i.e. the component sℓ of the last applied block of s equals t

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 19

But by Property 4.2 we know that

nesj ⊢ s̃j
hj−−−−−−−→

CHAINHEAD
s̃j+1

which means that block bj has valid headers, and this in turn means that the validation of bj
according to the chain rules must have failed because it contained an invalid block body. But
this contradicts our assumption that the block bodies were valid.

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 20

Values associated with the leader value calculations

certNat ∈ {n|n ∈ N, n ∈ [0, 2512)} Certified natural value from VRF
f ∈ [0, 1] Active slot coefficient
σ ∈ [0, 1] Stake proportion

5 Leader Value Calculation

This section details how we determine whether a node is entitled to lead (under the Praos
protocol) given the output of its verifiable random function calculation.

5.1 Computing the leader value

The verifiable random function gives us a 64-byte random output. We interpret this as a natural
number certNat in the range [0, 2512).

5.2 Node eligibility

As per [DGKR17], a node is eligible to lead when its leader value p < 1 − (1 − f)σ. We have

p < 1 − (1 − f)σ

⇐⇒
(

1
1 − p

)
< exp (−σ · ln (1 − f))

The latter inequality can be efficiently computed through use of its Taylor expansion and
error estimation to stop computing terms once we are certain that the result will be either above
or below the target value.

We carry out all computations using fixed precision arithmetic (specifically, we use 34
decimal bits of precision, since this is enough to represent the fraction of a single lovelace.)

As such, we define the following:

p =
certNat

2512

q = 1 − p
c = ln (1 − f)

and define the function checkLeaderVal as follows:

checkLeaderVal certNat σ f =

{
True, f = 1
1
q < exp (−σ · c), otherwise

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 21

References

[BC-D1] IOHK Formal Methods Team. Byron Blockchain Specification, IOHK Deliverable
BC-D1, 2019. URL https://github.com/intersectmbo/cardano-ledger/tree/

master/docs/.

[SL-D5] IOHK Formal Methods Team. A Formal Specification of the Cardano Ledger,
2019. URL https://github.com/intersectmbo/cardano-ledger/releases/

latest/download/shelley-ledger.pdf

[DGKR17] B. M. David, P. Gazi, A. Kiayias, and A. Russell. Ouroboros praos: An adaptively-
secure, semi-synchronous proof-of-stake protocol. IACR Cryptology ePrint Archive,
2017:573, 2017.

[SL-D1] IOHK Formal Methods Team. Design Specification for Delegation and
Incentives in Cardano, IOHK Deliverable SL-D1, 2018. URL https:

//github.com/intersectmbo/cardano-ledger/releases/latest/download/

shelley-delegation.pdf.

https://github.com/intersectmbo/cardano-ledger/tree/master/docs/
https://github.com/intersectmbo/cardano-ledger/tree/master/docs/
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-ledger.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-delegation.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-delegation.pdf
https://github.com/intersectmbo/cardano-ledger/releases/latest/download/shelley-delegation.pdf

Cardano: Formal Cardano Consensus Spec. (XXXX v.1.0, XXXX) 22

A Cryptographic Details

A.1 Abstract functions

• The nonce operation x ⋆ y from Figure 3 is implemented as the BLAKE2b-256 hash of the
concatenation of x and y.

• The functions slotToSeed and nonceToSeed from Figure 3 are implemented as the big-
endian encoding of the slot/nonce number in 8 bytes.

	Transition Rule Dependencies
	Common Interface
	NEWEPOCH Transition

	Blockchain Layer
	Block Definitions
	TICKN Transition
	UPDN Transition
	OCERT Transition
	Verifiable Random Function
	PRTCL Transition
	TICKF Transition
	CHAINHEAD Transition

	Properties
	Header-Only Validation

	Leader Value Calculation
	Computing the leader value
	Node eligibility

	References
	Cryptographic Details
	Abstract functions

